
i

ROCKEY4 SMART User’s Guide

Version 1.4

Copyright © 2009 Feitian Technologies Co., Ltd.

http://www.FTsafe.com

http://www.ftsafe.com/

ii

Feitian Technologies Co., Ltd. (“Feitian” for short) will do their best to keep
the content of this document as accurate as possible. But Feitian will not take
the responsibilities for any direct or indirect loss that may be caused by this
document. The content of this document will be amended along with the
updating of the product without notification.

Revision History:

Date Version Description

August 2009 1.4.0 1st Edition

iii

Feitian Technologies Co., Ltd.

Software Developer’s Agreement

All Products of Feitian Technologies Co., Ltd. (Feitian) including, but not limited
to, evaluation copies, diskettes, CD-ROMs, hardware and documentation, and all
future orders, are subject to the terms of this Agreement. If you do not agree with
the terms herein, please return the evaluation package to us, postage and insurance
prepaid, within seven days of their receipt, and we will reimburse you the cost of
the Product, deducting freight and reasonable handling charges.

1. Allowable Use - You may merge and link the Software with other programs
for the sole purpose of protecting those programs in accordance with the usage
described in the manual. You may make archival copies of the Software.

2. Prohibited Use - The Software or hardware or any other part of the Product
may not be copied, reengineered, disassembled, decompiled, revised,
enhanced or otherwise modified, except as specifically allowed in item 1. You
may not reverse engineer the Software or any part of the product or attempt to
discover the Software’s source code. You may not use the magnetic or optical
media included with the Product for the purposes of transferring or storing
data that was not either an original part of the Product, or a Feitian provided
enhancement or upgrade to the Product.

3. Warranty - Feitian warrants that the hardware and Software storage media
are substantially free from significant defects of workmanship or materials for

iv

a time period of twelve (12) months from the date of delivery of the Product to
you.

4. Breach of Warranty - In the event of breach of this warranty, Feitian’s sole
obligation is to replace or repair, at the discretion of Feitian, any Product free
of charge. Any replaced Product becomes the property of Feitian.

Warranty claims must be made in writing to Feitian during the warranty period
and within fourteen (14) days after the observation of the defect. All warranty
claims must be accompanied by evidence of the defect that is deemed
satisfactory by Feitian. Any Products that you return to Feitian, or a Feitian
authorized distributor, must be sent with freight and insurance prepaid.

EXCEPT AS STATED ABOVE, THERE IS NO OTHER WARRANTY OR
REPRESENTATION OF THE PRODUCT, EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

5. Limitation of Feitian’s Liability - Feitian’s entire liability to you or any
other party for any cause whatsoever, whether in contract or in tort, including
negligence, shall not exceed the price you paid for the unit of the Product that
caused the damages or are the subject of, or indirectly related to the cause of
action. In no event shall Feitian be liable for any damages caused by your
failure to meet your obligations, nor for any loss of data, profit or savings, or
any other consequential and incidental damages, even if Feitian has been
advised of the possibility of damages, or for any claim by you based on any
third-party claim.

v

6. Termination - This Agreement shall terminate if you fail to comply with
the terms herein. Items 2, 3, 4 and 5 shall survive any termination of this
Agreement.

vi

CE Attestation of Conformity

The equipment complies with the principal protection
requirement of the EMC Directive (Directive 89/336/EEC
relating to electromagnetic compatibility) based on a voluntary
test.

This attestation applies only to the particular sample of the product and its
technical documentation provided for testing and certification. The detailed test
results and all standards used as well as the operation mode are listed in

Test report No.: 70407310011
Test standards: EN 55022/1998 EN 55024/1998

After preparation of the necessary technical documentation as well as the
conformity declaration the CE marking as shown below can be affixed on the
equipment as stipulated in Article 10.1 of the Directive. Other relevant Directives
have to be observed.

FCC certificate of approval

This Device is in conformance with Part 15 of the FCC Rules
and Regulations for Information Technology Equipment.

vii

Quick Start

■ The ROCKEY4 SMART Evaluation Kit is available for developers. It includes a dongle, a package,

a manual, a CD, and an extension cable etc. The evaluation dongle is completely the same as the

formal version of dongle, except that its passwords are public (P1: C44C; P2: C8F8; P3: 0799; P4:

C43B). After receiving the formal version, you can modify its passwords with the initialization tool,

so that others cannot view and/or change the the content of your dongle.

■ Install the ROCKEY4 SMART Developer’s Kit. Run Setup.exe under the root directory of the CD.

The Setup Wizard will guide you through the installation process. (For details, see Chapter 3.)

■ Under directory Tools on the CD, you can find the Dongle Editor (Ry4S_Editor.exe) provided with

the ROCKEY4 SMART dongle, which is a utility for you to make some necessary operations on

the dongle (for details see Chapter 5). The envelope encryption tool, Tools\Envelop\RyEnvX.exe,

enables you to encrypt the PE-structure files without programming work (for more information, see

Chapter 2 in ROCKEY4 SMART License Management).

■ With the function calling (API) protection method, you can embed the ROCKEY4 SMART API in

the protected application program, making the most out of the dongle. In this way, the high-level

security is achieved. Some example codes are provided to you to help understand the API

encryption method. For details on the API encryption, see Chapter 6 and the sample programs

under directory Samples on the CD.

■ For some frequently asked questions and answers, see Chapter 8.

■ For more information or latest updates, please visit: http://www.ftsafe.com

http://www.ftsafe.com/

viii

Contents

CHAPTER 1 INTRODUCTION... 1

1.1 ABOUT ROCKEY4 SMART ... 1

1.2 SOFTWARE PROTECTION PRINCIPLES .. 2

1.3 ROCKEY4 SMART ADVANTAGES ... 2

1.4 CHOOSING AN APPROPRIATE ENCRYPTION SOLUTION... 3

CHAPTER 2 HARDWARE FEATURES ... 5

2.1 INTERNAL STRUCTURE .. 5

2.2 HARDWARE INTERFACE... 5

2.3 CONSIDERATIONS .. 5

CHAPTER 3 DEVELOPMENT KIT ... 6

3.1 CONTENTS OF THE CD... 6

3.1.1 Tools... 6

3.1.2 Development Interfaces ... 6

3.2 INSTALLING DEVELOPMENT KIT ... 7

3.3 UNINSTALLING DEVELOPMENT KIT ...11

3.4 DRIVER INSTALLATION UNDER WINDOWS 98 SE ...11

CHAPTER 4 BASIC CONCEPTS.. 13

4.1 PASSWORDS... 13

4.2 HARDWARE ID .. 13

4.3 USER MEMORY AREA.. 14

4.4 MODULE CHARACTERS ... 14

4.5 MODULE PROPERTY CHARACTERS.. 15

ix

4.6 ALGORITHM AREA... 15

4.7 USER ID... 15

4.8 RANDOM NUMBER... 16

4.9 SEED CODE AND RETURN CODES .. 16

4.10 TIMER AND COUNTER .. 16

4.11 DONGLE CONFIGURATION UPDATE.. 16

CHAPTER 5 DONGLE EDITOR... 18

5.1 INTRODUCTION.. 18

5.2 DESCRIPTION OF OPERATIONS ... 21

5.2.1 Entering Passwords ... 21

5.2.2 Editting... 22

5.2.3 Testing .. 24

5.2.4 Timing and Number of Uses... 25

5.2.5 Self-testing ... 27

5.3 SAVE YOUR WORK ... 27

CHAPTER 6 CALLING API FUNCTIONS .. 29

6.1 FUNCTION PROTOTYPE AND DEFINITION... 29

6.2 ROCKEY4 SMART API SERVICES... 32

6.3 ERROR CODES ... 48

6.4 BASIC APPLICATION EXAMPLES .. 49

6.4.1 Unencrypted Program – Step 0 .. 50

6.4.2 Finding Dongle – Step 1 .. 50

6.4.3 Opening Dongle – Step 2 ... 51

6.4.4 User Memory – Step 3/Step 4... 52

6.4.5 Generating a True Random Number with Dongle– Step 5........................... 55

6.4.6 Seed Code – Step 6/Step 7 .. 57

x

6.4.7 User ID – Step 8/Step 9.. 60

6.4.8 Setting Module Characters – Step 10/Step 11/Step 12 63

6.4.9 Dongle Cascading – Step 13.. 67

6.5 ADVANCED APPLICATION EXAMPLES .. 71

6.5.1 User Memory Area Applications.. 71

6.5.2 Seed Applications... 81

6.5.3 User ID Applications ... 86

6.5.4 Module Applications .. 89

6.5.5 Dongles with Same UID for Different Software Products 95

CHAPTER 7 ROCKEY4 SMART HARDWARE ALGORITHMS..................... 103

7.1 INTRODUCTION TO SELF-DEFINED ALGORITHMS... 103

7.1.1 Instruction Format... 103

7.1.2 Internal Algorithms & Application Interface... 104

7.1.3 Difference Between Three Algorithms ... 105

7.1.4 API Interfaces of User Program .. 106

7.2 WRITING SELF-DEFINED ALGORITHMS.. 108

7.2.1 Writing Algorithm .. 108

7.2.2 Instruction Conventions... 109

7.3 EXAMPLES OF USE OF USER-DEFINED ALGORITHMS..110

7.3.1 Basic Appliation Examples ...110

7.3.2 Integrated Algorithm Application Examples.. 121

7.3.3 Advanced Algorithm Application Examples... 137

7.4 CONSIDERATIONS .. 142

7.5 APPLICATION TIPS OF ENCRYPTION SOLUTION.. 142

CHAPTER 8 FAQS .. 144

8.1 COMMON WAYS OF DEALING WITH PROBLEMS... 144

xi

8.2 FAQS ... 144

APPENDIX A DIRECTORY STRUCTURE OF CD... 147

Introduction

1

Chapter 1 Introduction

1.1 About ROCKEY4 SMART

ROCKEY4 SMART is a software protection product. The device can be connected to the USB

port of your computer. The software can be protected using the ROCKEY4 SMART encryption key

against unauthorized duplicate, access or use. After encrypting and protecting your software with the

dongle, when the protected software starts, an error message will be rendered and the protected

software will stop running if the dongle device is not present, access to a module is restricted, or the

predefined license expires,. At the same time, the ROCKEY4 SMART dongle also supports a

comprehensive set of other protection mechanisms.

Unlike some other peer products, the ROCKEY4 SMART dongle is actually a mini-computer

with a CPU, a memory and a tailored middleware, which interacts with applications. You can code

some complicated algorithms in the dongle, and then call them in your programs to realize the

encryption. This encryption method is recommended because it has high level of security and is hard

to be cracked. In addition, the dongle is easy to use because the functions calling of the dongle is very

simple.

The ROCKEY4 SMART dongle is provided with an envelope encryption tool. The envelope

encryption tool (RyEnvX.exe) can be used to encrypt Windows PE files (i.e., .dll, .exe, and .arx files).

The tool is very easy to use. It only takes you several seconds to encrypt such a file. If you do not

have the source code, or you are not familiar with the APIs, it is a good idea to use the envelope

encryption. If possible, the encryption performance can be greatly enhanced by calling the API

functions in combination with the envelope encryption.

In this manual, we will describe the components of the encryption software one by one. The

ROCKEY4 SMART User’s Guide v1.0

2

following two parts are the main contents of this manual.

1) Encryption key editor (Ry4S_Editor.exe): It is a GUI tool for performing operations on the

dongle. With the editor, you can not only read from or write to the dongle, but also carry

out an algorithm operation or test the dongle. (For details, see Chapter 5.)

2) Encryption key APIs: They can be used to create strong protection solutions in a flexible

way. In this manual, we use VC++ programs as examples to give extensive introduction.

Besides, under the Samples directory in the CD, the sample programs in other languages

are also provided. (For details, see Chapter 6.)

1.2 Software Protection Principles

The goal of software protection is reached by designing programs to require access to the dongle

when they are running, so that the programs are dependent on the dongle and they cannot be

duplicated due to the irreplicability of the dedicated chip of the dongle.

1.3 ROCKEY4 SMART Advantages

1 Small and Exquisite

The ROCKEY4 SMART dongle is small, exquisite, good-looking, and easy to carry.

2 High Speed

The running speed of the software encrypted by the ROCKEY4 SMART dongle is almost not

affected. Even if the user defined an extremely complicated encryption algorithm in the dongle, the

ROCKET4 SMART dongle can still handle it in a very short period, and ensure the smooth running of

the user’s program.

3 Easy to Use

Both the API function calling encryption and the envelope encryption are designed in

consideration of user convenience by simplifying user interfaces. In a short time period, the users can

master the usage method of the ROCKET4 SMART key, to cut down the time spent on software

encryption.

4 High Encryption Strength

Introduction

3

The ROCKEY4 SMART dongle is a brand-new strong strength encryption product. It employs a

two-level password protection mechanism. With only the first level password, you cannot modify the

special storage area in the dongle. Thus, the software developer and the end user can be granted with

different rights. A time gate is built in the dongle to prevent software tracing. In addition, the software

suppliers are allowed to define hardware encryption algorithms by themselves, thus raise the security

of the encryption key to a new level.

5 High Reliability

The ROCKEY4 SMART dongle has a complet user management system. Different users will

never obtain identical passwords. The hardware ID for each dongle is unique. The password and the

hardware ID are burnt into the CPU, even the manufacturer cannot change them.

6 Comprehensive System Support

The ROCKEY4 SMART dongle supports various kinds of operating systems. The encrypted

application programs support the following platforms: Windows 98 SE/Me/2000/XP/Server

2003/Vista/2008/Windows 7, Linux, and Mac OS.

7 Various Software Interfaces

Software interfaces are available for almost all popular development tools, such as PB, DELPHI,

VB, VC, C++ BUILDER, C#, and Java, etc.

1.4 Choosing an Appropriate Encryption Solution

The strength of software protection depends not only on the dongle itself, but on how the

developer uses it largely. You should make full use of the dongle to gain the greatest strength. The

ROCKEY4 SMART dongle provides two encryption modes: the envelope encryption and the API

calling encryption.

The envelope encryption can be achieved by the tool (RyEnvX.exe) under the directory

“Tools\Envelop” on the CD. Just as its name implies, the envelope encryption is to add an envelope to

some user files, which calls the ROCKET4 SMART encryption functions to realize the protection

over software. . When running the program encrypted with an envelope, the envelope program section

will automatically access the ROCKEY4 SMART dongle and determine if the program is allowed to

ROCKEY4 SMART User’s Guide v1.0

4

proceed or not, according to the result of the access. The envelope encryption directly encrypts and

handles the compiled files. The advantages are that the developers need neither to learn a lot of

encryption knowledge, nor to modify the source code.If you have no time to learn cryptography or

you have no source code at hand, this is a good choice and convenient. However, the encryption

strength level is not high. That is because the encryption handling is automatically completed by the

programs, so it follows some rules and may be discovered; Moreover, it cannot encrypt the script

language files (e.g., VBA) which cannot be compiled. These are the inherent defects of the envelope

encryption.

The API calling encryption is to choose an appropriate language interface provided with the

dongle to handle access to the dongle according to the language used for development by the

developer. This mode allows you to make full use of the ROCKEY4 SMART dongle. In addition, the

determination of encryption points and method is left to the developer. The security is lifted to a

higher level, especially when the developer uses the internal algorithm functions of the dongle. But

the API calling method should combine with the developer’s source code, and require the developer

to learn and master the API calling method of the ROCKEY4 SMART. Itrequests a higher starting

level of the developer.

Hardware Features

5

Chapter 2 Hardware Features

2.1 Internal Structure

The kernel of the ROCKEY4 SMART dongle is a smart card chip. The dongle also contains a

memory chip. The data on that memory chip will not be lost when the dongle is powered off. The

memory is divided into a user memory area, a module area, an algorithm area, and a user ID area. The

developer can store important information of his software (e.g. the serial number) in the dongle. Note

that, the number of the write cycles for each memory unit is 500,000 to 1,000,000, while the number

of the read operation is not restricted. The number of 500,000 is a pretty large number, and can

completely meet most requirements of developers. The dedicated smart card chip contains a random

number generator, a seed code generator, and a user-defined algorithm interpreter, etc.

2.2 Hardware Interface

The ROCKEY4 SMART dongle supports USB 1.1 standard. With a USB hub, you can connect a

maximum number of 16 dongles to one computer at one time. Each dongle is equipped with an

indicator for informing some common problems. (Normally the indicator is always on after the

dongle is plugged into the USB port. Otherwise, the hardware has a problem or the driver is not

loaded.)

2.3 Considerations

Theoretically, the ROCKEY4 SMART dongle is a plug-and-play device, and can be plugged in

and removed at any time. However, instability may be caused if it is removed when being accessed by

a program.

ROCKEY4 SMART User’s Guide v1.0

6

Chapter 3 Development Kit

You can find the development package on the CD of the development kit (the box), and then

encrypt your software with the tools and interfaces of the package. To enable you to install the

contents of the CD on your computer, a file Setup.exe, which is located under the root directory, is

provided.

3.1 Contents of the CD
The contents of this CS are introduced in the following two sections.

3.1.1 Tools

1) Ry4S_Editor.exe: It is an editing and testing tool located under directory “Tools\Editor”. You

can use it to edit the contents of the dongle, test the dongle, test the contents you have written to the

dongle, write to a set of dongles and more. All functions of the dongle can be utilized with this tool.

2) RyEnvX.exe: It is an envelope encryption tool located under directory “Tools\Envelop”. You

can use it to encrypt your software without programming. It can be used for encrypting more than one

file at a time.

3) .Net program encryption tool: It is located under directory “Tools\NetShell”, used for encrypting

programs developed with C#, VB.NET, Managed C++ etc. It also provides a timing license function.

Flash encryption tool: is provided under directory “Tools\SwfEnv”. By playing an encrypted .swf file

using a flash player with an envelope, the copyright interest of the developer is maintained.

For more information on how to use the envelope encryption tool, the .NET program encryption tool,

and the flash encryption tool, see ROCKEY4 SMART License Management.

3.1.2 Development Interfaces
The interfaces are distinguished with different directory names. For example, the Delphi

interfaces are located under directory Delphi. For Windows developers, the DLL interface is

Development Kit

7

provided. The calling of the DLL is supported for most of Windows development environments.

3.2 Installing Development Kit

To install the development kit of the ROCKEY4 SMART dongle, do as follows:

Step 1

This is a welcome page. Please close other programs before installation, as shown in Figure 3-1.

Figure 3-1 Welcome Screen

Step 2

This is the license statement. To proceed to the next step, choose “I Agree”:

ROCKEY4 SMART User’s Guide v1.0

8

Figure 3-2 License Agreement

Step 3

Choose installation mode and installed components, as shown in Figure 3-3.

If you choose “Typical”, the installer will install ROCKEY4 SMART application program

interface libraries, application program interface header files, help documents, encryption tools, and

samples.

If you choose “Compact”, the installer will install ROCKEY4 SMART application program

interface libraries and application program interface header files only.

If you choose “All”, the installer will install all development components and development

manuals of ROCKEY4 SMART.

If you choose “Custom”, you can select the components you want to install.

Development Kit

9

Figure 3-3 Installation Mode Selection

Step 4

Choose an installation path, as shown in Figure 3-4:

ROCKEY4 SMART User’s Guide v1.0

10

 Figure 3-4 Installation Path Selection

Step 5

When the installation is completed normally, the following window will appear, as shown in

Figure 3-5:

Development Kit

11

Figure 3-5 Completing Installation

3.3 Uninstalling Development Kit
To uninstall the plugin, you can:

1) Delete “ROCKEY4 SMART” from “Add or Remove Programs” in “Control Panel”; or

2) Select “Start” －> “Programs” －> “Rockey4 Smart SDK V1.10”, and choose “Uninstall

ROCKEY4 SMART SDK V1.10”.

3.4 Driver Installation under Windows 98 SE
If you are using Windows 98 SE, when you plug a ROCKEY4 SMART dongle into your

computer, you may be asked to insert the Windows 98 SE installation CD. Please insert the

ROCKEY4 SMART User’s Guide v1.0

12

ROCKEY4 SMART installation CD and change the directory to “Driver For Win98” and install it.

Basic Concepts

13

Chapter 4 Basic Concepts

To protect your software using the ROCKEY4 SMART dongle, you should read this chapter

carefully to understand the basic concepts of the dongle.

4.1 Passwords
Each developer that orders the ROCKEY4 SMART dongle will be provided with 4

passwords, each has a length of 16 bits. Two of them are basic passwords (or first-level

passwords). The others are advanced passwords (or second-level passwwords). For example, the

public passwords for the evaluation kit are C44C (P1), C8F8 (P2), 0799 (P3), and C43B (P4). The

first two passwords are the first-level passwords. The other two passwords are the second-level

passwords. These passwords are written before the dongle is delivered, and can be modified by

developers. To gain all rights to access the dongle, developers must enter all of the passwords

properly. The advanced passwords should be excluded from the delivery to end users, because the

basic passwords are sufficient for them. At a point in a program where the passwords should

be referenced, both of the advanced passwords must be set to 0. The following sections will

explain which passwords are needed in a specific situation.

4.2 Hardware ID
Each ROCKEY4 SMART dongle contains a globally unique hardware ID. This ID is written

to it by the manufacturer and even the manufacturer cannot change it later. With this ID, the

unique validity can be validated by developers when the encryption is conducted for a particular

user.

Operational attribute:

Readable with both first and second level passwords; not writable with both first and second

ROCKEY4 SMART User’s Guide v1.0

14

level passwords.

4.3 User Memory Area
Developers can read or write to this area. For example, you can write some important

information required for the software to this area to check if the software that is running is valid or

not. Thus, the software works only if the dongle is coupled to it.

This area is divided into two parts: low address section (0 - 499) and high address section

(500 – 2000).

Operational attribute:

For low address section, readable and writable with both first and second level passwords;

For high address section, readable with first level passwords, readable and writable with

second level passwords.

For version earlier than 1.03, RY_READ and RY_WRITE can be used to read or write to the

dongle. For version 1.03 or later, RY_READ_EX and RY_WRITE_EX are recommended.

4.4 Module Characters
Module characters are stored in special units of the dongle designed to implement

multi-module encryption. The units can also be used to store particular data for software

encryption. Their usage depends on whether the envelope encryption or the API calling is used.

64 units are reserved in the ROCKEY4 SMART dongle for storing module characters. The

length of each unit is 16 bits. In other words, 64 modules can be encrypted at a time. Developers

can write to these units. A module is available only if the module character content is not 0. End

users can confirm if a module is available or not by checking the module character property. If

they want to know the content of the module character exactly, they must read the content using a

self-defined algorithm. Therefore, the security is increased.

Operational attribute:

Not readable with first and second level passwords; writable with only second level

passwords.

Basic Concepts

15

4.5 Module Property Characters
The property characters consist of 8 units, each with a length of 16 bits. The first 8-bit

character is the module availability character, and the last 8-bit character is the module

decreasability character.

Each bit of the module availability property character indicates if a corresponding module

character is 0 or not.

Each bit of a module decreasability property indicates if a corresponding module character is

decreasable. 1 stands for Yes. 0 stands for NO.

Operational attribute:

For module availability property: readable with both first and second level passwords; not

writable with both first and second level passwords.

For module decreasability property: readable with both first and second level passwords;

writable with only second level passwords.

4.6 Algorithm Area
This area is used for storing the self-defined algorithm written by developers. It includes 128

units, each with a length of 16 bits. Each instruction occupies a unit. Thus, developers are allowed

to define an algirthm with 128 instructions (for details see Chapter 7).

Operational attribute:

Not readable with first and second level passwords; writable with second level passwords.

4.7 User ID
It is a serial number unit for managing the published software by developers. The ID is a

32-bit number stored at a particular location inside the dongle. Of course, developers are allowed

to write other information to the location, such as a time value or product management related

information etc.

Operational attribute:

ROCKEY4 SMART User’s Guide v1.0

16

Readable with both first and second level passwords; writable with only second level

passwords.

4.8 Random Number
A random number can be generated with the ROCKEY4 SMART dongle. The random

number can be used for anti-tracing, or as an operation factor in a hardware algorithm etc.

4.9 Seed Code and Return Codes
By providing a seed code to the ROCKEY4 SMART dongle, you can obtain 4 return codes

for this seed code through an internal algorithm operation. The seed code algorithm is not public.

Dongles with the same passwords generate identical return codes when the same seed code is input.

For dongles with different passwords, different return codes will be generated even if the same

seed code is input . By verifying this dependency, you can determine if the dongle is the expected

one or not.

4.10 Timer and Counter
In current version of SDK, the functions of timer and counter are enhanced. 64 timer units

and 64 counter units are available for controlling the use of programs in terms of time and number

of uses respectively. In the timer unit, you can write a number of hours or an expiration date. By

designing the software to access one of the 64 timer units, the timing license is implemented.

Similarly, the number of uses can also be controlled using the counter units.

If a number of hours is written to a timer unit, the time value will be decreased automatically once

the dongle is connected to the computer, without the need of other means of control.

For information on how to call the functions see Articles 32 to 36 in Section 6.2.

4.11 Dongle Configuration Update

In the versions 1.03 and above of SDK, a function of updating the overall configuration of the

dongle is available. On the premise of key being verified, all configuration of the dongle is

Basic Concepts

17

updated at a time by calling the API interface, including the user ID, the memory area, the module

value, the algorithm area, and the time and number counter units.

The detailed information about how to use the tools provided by the SDK and use the API

function interface to update the dongle is available in Rockey4 Smart License Management.

ROCKEY4 SMART User’s Guide v1.0

18

Chapter 5 Dongle Editor

5.1 Introduction

The ROCKEY4 SMART Editor is a tool for performing operations, such as modifying,

testing, batch testing, and batch reading and writing, on the ROCKEY4 SMART dongle. This tool

is located at directory “Tools” under the installation directory or on the CD. The interface of the

Editor (Ry4S_Editor.exe) includes 5 parts: the toolbar and dropdown menu, the status bar, the tree

view, the operation status record, and the operation main window (see Figure 5-1).

Figure 5-1

(1) Toolbar and dropdown menu: They are located on the top of the window. Some functions,

Dongle Editor

19

such as print, save and refresh, can be used through activating the icons or the dropdown

menu. A set of shortcut keys and icon buttons are also available there.

(2) The status bar is located at the bottom of the window. It is used for indicating the working

status of the ROCKEY4 SMART dongle, and the operation progress through a progress bar.

The progress bar is not displayed when no operation is performed, or the operation has been

finished. See Figure 5-2.

 Figure 5-2

(3) The tree view is located on the top left corner of the window. It displays the version of

current operating system and the ROCKEY4 SMART dongles connected to the computer

with same passwords. You can edit or test a particular dongle by selecting it from the list.

The tree view can be refreshed using the menu item or the button on the toolbar.

(4) The operation status column records the time, result, or error prompts (if any) of all

operations. The list can be cleared using the menu item or the button on the toolbar. See

Figure 5-3.

ROCKEY4 SMART User’s Guide v1.0

20

Figure 5-3

(5) The operation main window involves Input Password, Edit, Test, Self Test etc. Also, you can

use the editing template to operate the ROCKEY4 SMART dongle.The template can be

saved to the disk, or be loaded from the disk. Thus, it is easy for developers to initialize the

ROCKEY4 SMART dongle.

The editor supports drag-and-drop and file relationship. By clicking on the template file of

the explorer, the editor will start and you can edit the file then. The template file can be opened

through the menu or using the explorer. In addition, the content of the template can be printed and

previewed. Without the dongle, the editor is still available. The template file can be used with one

or more dongles. During operating the dongle, you can make operations on the interface. The

progress can be viewed from the progress bar.

Note:

1. Numerical Input/Display

Decimal representation is required for the number of seeds, the number of hours, and the

Dongle Editor

21

number of uses. Other numbers should be input and displayed in hex.

2. Do not edit the part of the template which is being operated when making an operation on

the dongle. For example, the data of the memory part of the template must not be edited when

writing to the memory.

5.2 Description of Operations
5.2.1 Entering Passwords

First, you must enter the basic passwords and the advanced passwords of your ROCKEY4

SMART dongle. See Figure 5-4.

 Figure 5-4

Be sure to type correct passwords. If the basic passwords are incorrect, the dongle cannot be

used normally. If the basic passwords are correct, but the advanced passwords are not correct, a

problem may occur when writing to the dongle, though the dongle can be found and read.

To perform an operation on the DEMO dongle, click DEMO button. The public passwords

are C44C (P1), C8F8 (P2), 0799 (P3), and C43B (P4).

If you have selected Auto-save password option, the passwords will be encrypted and saved

ROCKEY4 SMART User’s Guide v1.0

22

automatically, so that the action of entering them again and the possibility of entering errors can be

both avoided. After entering the passwords, you are logged into the ROCKEY4 SMART Editor,

and the corresponding dongles with the same passwords will be automatically searched.

5.2.2 Editting
Edit the selected ROCKEY4 SMART dongle. Now you can see the only identity of this

ROCKEY4 SMART dongle, i.e., hardware ID. Even the manufacturer of this dongle cannot

change the hardware ID of the dongle.

As shown in Figure 5-5, the interface includes 6 areas: user memory area, module area,

algorithm area, user ID area, single dongle operation area, and batch operation area.

In the user memory area, you can read data from or write data to the dongle. The data may be in

hex or ASCII format.After you click Read or Write button, a progress bar will be displayed in the

status bar. When the operation is complete, the result will be shown in the status bar.

You can perform an operation on a particular module in the module area. You can input a

value and/or specify if decrease is allowed.

In the algorithm area, you can write a set of algorithm statements to the dongle. An algorithm

statement consists of operands and operators (e.g. A=A+B). (For more information on the

algorithm, see Chapter 7). On the right side of each statement, there is a button, which indicates if

the statement is the starting (S), middle (blank), ending (E), or standlone (SE) statement. If you

click on a button, the incication flag will appear repeatedly. If you have selected “Auto S/E”

option, the indication flags like the starting or the ending flags will be added according to the

algorithm intervals automatically, as shown in Figure 5-5.

Dongle Editor

23

Figure 5-5

You can read a user-defined ID from or write a user-defined ID to the dongle in the “User ID

Zone”.

In the “Batch Operation” area, you can write to a batch of dongles. Type a starting ID in the

“User ID” field. Select a manner in which the IDs will be set (see below). Click “Batch Write”

button. You will write data to a batch of dongles. After that, the data on these dongles is identical,

except that the user ID may be different (depending on the manner in which the ID is generated as

you specified in the following ways).

1) User ID +: The value entered into the User ID field will be written to the first dongle in

the device selection area. After being increased by 1, the value is written to the next

dongle, and so forth. If you initially specify a user ID “10”, the next user ID written to

the second dongle will be “11”.

2) User ID -: The user ID will be decreased by 1.

3) Use Time ID: Use the system time as user ID.

ROCKEY4 SMART User’s Guide v1.0

24

4) No Change: The value in the User ID field will be written to all dongles in the device

selection area without any changes.

In the single dongle operation area, you can perform an operation on a single dongle you

select at a time.

Note: The value of a module and the algorithm cannot be read. You can only

write them.

5.2.3 Testing
Test the selected ROCKEY4 SMART dongle(s). The testing interface includes the user

memory area, the algorithm area, the user ID area, the module property area, and the seed

calculation area, as shown in Figure 5-6.

Figure 5-6

1) The user memory is defined by developers. Data can be displayed in hex or ASCII

format. To read data from the user memory, click “Read” button.

2) In the user algorithm area, choose an algorithm you want to test. If you choose “Calc.

Dongle Editor

25

1” or “Calc. 3”, a module number input box will appear. If you choose Calc. 2, a seed

input box will appear. Type the initial address of the algorithm and the values of

parameters A, B, C, and D in hex format. Enter the module number or seed. Click

“Calculate”. The results will be displayed in “Results” section. The address refers to

the location of the starting statement or the standlone statement.

3) In the user ID area, click “Read” to read a user-defined ID. The size of the user ID area

on the dongle is 32 bits.

4) In the module property area, the validity and degression properties of a module are

displayed. To refresh this area, click “Read” button. If “Dec” buttons are greyed out,

the values of the modules cannot be decreased. Otherwise, you can decrease the value

by 1 by clicking on “Dec” button.

5) The seed calculation area includes 2 sections. Four results of seed calculation are

displayed in the top section. In “Number” field, enter a decimal number. The random

seed and results will be written to a file. By default, the filename is

“Random_Seed.txt” under the executable directory.

5.2.4 Timing and Number of Uses
There are 64 timer units and 64 counter units in the dongle. On “Hour/Counter” page, you can

specify or view the values of these units. The upper half window is the values for timer units,

while the lower half is the values of counter units.

ROCKEY4 SMART User’s Guide v1.0

26

Figure 5-7

1) The value of a timer unit can be a number of hours remained or an expiration date.By

checking “Use expiration date”, the timing license mode can be switched to use an

expiration date. After specifying a value, click “Write” to save it to the dongle.

2) Each counter unit stores an integer value. By clicking “Write” button, the integer value

in the text box will be written to the counter unit of the dongle. If you select “Auto

Dec” option, the value of the counter unit will be decreased by 1 each time the

program is executed, until the value equals to 0.

Note:

When using versions earlier than v1.03, it is recommended that both the

number of hours in the timer unit and the number in the counter unit should not

exceed 65534. Moreover, the expiration date in the timer unit should not exceed

2013. Otherwise, the result will not be accurate.

For version 1.03 or higher, the number of hours should be lower than 70000000 and

Dongle Editor

27

the value of the counter should be lower than 400000000 for the same reason.

5.2.5 Self-testing
You can perform a self-testing operation on all ROCKEY4 SMART dongles or on the

selected ones, as shown in Figure 5-8.

Figure 5-8

Important notes:

The content of the dongle will be destroyed by this operation. The data on the dongle

will be cleared after performing the operation, except the password information.

For version 1.03 or higher, the value of the time unit will be the current date after the

self-testing operation. But the value is 0 hour after the operation for other versions.

5.3 Save your Work

The template can be saved to the disk or be printed to back up, as shown in Figure 5-9.

ROCKEY4 SMART User’s Guide v1.0

28

Figure 5-9 Print Preview

Calling API Functions

29

Chapter 6 Calling API Functions

The Application Programming Interface (API) of the ROCKEY4 SMART dongle is the most

basic, as well as the most flexible encryption way. You can make the most out of the dongle by

using the API to encrypt a program. The effectiveness of encryption depends on the way you use

the API. The more complex the API calling is, the better the software is protected.. The API

interface has been simplified to the maximum level.

Applications connect to the ROCKEY4 SMART dongle through the API. You can place the

points for checking the presence of the dongle anywhere in the applications and determine how to

respond to the result of checking. Alternatively, you can check the data in the user memory area of

the dongle in your applications.

If you want to encrypt a program with the API, you can use the Editor to perform some

necessary operations first, such as setting modules, writing to user memory, writing algorithms and

user ID, etc. Of course, these operations can also be done by using the API.

Below, we use examples with the C interface to illustrate the meaning of the interface parameters.

Similarly, you may call other language interfaces in the same way.

6.1 Function Prototype and Definition

WORD Rockey

(

 WORD function，

 WORD* handle，

 DWORD* lp1，

 DWORD* lp2，

 WORD* p1，

ROCKEY4 SMART User’s Guide v1.0

30

 WORD* p2，

 WORD* p3，

 WORD* p4，

 BYTE* buffer

)；

There is only one function for the ROCKEY4 SMART dongle. All functions of the dongle

can be used by calling this interface. This function has multiple functions in itself.

The following is an example of C language calling. The following descriptions are all based

on this example.

retcode = Rockey(function，handle，lp1，lp2，p1，p2，p3，p4，buffer)；

Definition of parameters of ROCKEY function:
Name Type Meaning
Function 16-bit function number API function
Handle Pointer to 16-bit handle Pointer to the operation

handle
lp1 Pointer to 32-bit integer Long parameter 1
lp2 Pointer to 32-bit integer Long parameter 2
p1 Pointer to 16-bit integer Parameter 1
p2 Pointer to 16-bit integer Parameter 2
p3 Pointer to 16-bit integer Parameter 3
p4 Pointer to 16-bit integer Parameter 4
Buffer Pointer to 8-bit integer Pointer to character

buffer

Note:

All interface parameters must be defined in the program. Passing a NULL

pointer is not allowed.

1) function is a 16-bit number, which represents the specific function. The meaning of the

function is defined as follows:
RY_FIND 1 Find dongle
RY_FIND_NEXT 2 Find next dongle
RY_OPEN 3 Open dongle
RY_CLOSE 4 Close dongle
RY_RANDOM 7 Generate random number
RY_SEED 8 Generate seed code
RY_WRITE_USERID 9 Write user ID
RY_READ_USERID 10 Read user ID

Calling API Functions

31

RY_SET_MODULE 11 Set module character
RY_CHECK_MODULE 12 Check module status
RY_WRITE_ARITHMETIC 13 Write algorithm
RY_CALCULATE1 14 Calculation 1
RY_C ALCULATE2 15 Calculation 2
RY_CALCULATE3 16 Calculation 3
RY_DECREASE 17 Decrease module unit
RY_SET_RSAKEY_N 29 Set RSA private key – N; the

public key is 65537
RY_SET_RSAKEY_D 30 Set RSA private key – D; the

public key is 65537
RY_SET_DES_KEY 41 Set DES key
RY_ DES_ENC 42 DES/3DES encryption
RY_ DES_DEC 43 DES/3DES decryption
RY_ RSA_ENC 44 RSA encryption
RY_ RSA_DEC 45 RSA decryption
The following is the functions of Read/Write, Count time, Count number, and Update used

in versions earlier than v1.03. These functions are not recommended. They are reserved and listed

here for compliance purpose only.
RY_READ 5 Read dongle
RY_WRITE 6 Write to dongle
RY_SET_COUNTER 20 Set the value of a number counting unit
RY_GET_COUNTER 22 Read the value of a number counting unit
RY_DEC_COUNTER 23 Decrease the value of number counter by 1
RY_SET_TIMER 24 Set the value of a clock unit
RY_GET_TIMER 25 Read the value of a clock unit
RY_ADJUST_TIMER 26 Adjust the clock inside the dongle
The following is the enhanced functions of version v1.03 or above. These functions are

recommended, but they cannot be used together with the old functions listed above.
RY_READ_EX 46 Read memory
RY_WRITE_EX 47 Write to memory
RY_SET_COUNTER_EX 160 Set the value of a number counting unit
RY_GET_COUNTER_EX 161 Read the value of a number counting unit
RY_SET_TIMER_EX 162 Set the value of a clock unit
RY_GET_TIMER_EX 163 Read the value of a clock unit
RY_ADJUST_TIMER_EX 164 Adjust the clock inside the dongle
RY_UPDATE_GEN_EX 166 Generate the content of an update file
RY_UPDATE_EX 168 Update
RY_SET_UPDATE_KEY 169 Set update key-pair
RY_ADD_UPDATE_HEADER 170 Fill license file header
RY_ADD_UPDATE_CONTENT 171 Fill the content of license file
RY_GET_TIME_DWORD 172 Convert time (DWORD type)
2) handle is the pointer to the operation handle.

ROCKEY4 SMART User’s Guide v1.0

32

3) lp1 and lp2 are pointers to long integer parameters. Their contents depend on the

specific function.

4) p1, p2, p3, and p4 are pointers to short integer parameters. Their contents depend on the

specific function.

6) buffer is a pointer to the character buffer. Its content depends on the specific function.

6.2 ROCKEY4 SMART API Services

The API services are described below in detail. The functions marked with [*] require both

of the two advanced passwords (p3, p4).

Note: p3 and p4 are advanced passwords. They are used for developers to

operate the dongle only, and should not appear in the software provided to end

users. These passwords should be set to “0” when searching for dongles in the

software provided to end users.

1. RY_FIND

For: Check if the dongle with specified passwords exists

 Input Parameters:

 function = RY_FIND

 *p1 = password 1

 *p2 = password 2

 *p3 = password 3 (optional)

 *p4 = password 4 (optional)

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

If the operation is successful, the hardware ID of the dongle will be written to *lp1.

2. RY_FIND_NEXT

For: Check if the dongle with specified passwords still exists

Calling API Functions

33

 Input Parameters:

 function = RY_FIND_NEXT

 *p1 = password 1

 *p2 = password 2

 *p3 = password 3 (optional)

*p4 = password 4 (optional)

*lp1 = the hardware ID of the last dongle found by RY_FIND or RY_FIND_NEXT

Return Values:

 If the operation is successful, the hardware ID of the dongle will be written to *lp1.

3. RY_OPEN

For: Open the dongle with specified passwords and hardware ID

 Input Parameters:

 function = RY_OPEN

 *p1 = password 1

 *p2 = password 2

 *p3 = password 3 (optional)

*p4 = password 4 (optional)

 *lp1 = hardware ID

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

If the operation is successful, the handle of the dongle is written to *handle.

4. RY_CLOSE

For: Close the dongle with specified handle

 Input Parameters:

 function = RY_CLOSE

 *handle = handle of the dongle

ROCKEY4 SMART User’s Guide v1.0

34

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

5. RY_READ

For: Read the user memory of the dongle

 Input Parameters:

 function = RY_READ

 *handle = handle of the dongle

 *p1 = location

*p2 = length

buffer = pointer to the buffer

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful, the content of the memory will be written to the buffer.

6. RY_WRITE

For: Write content to user memory

 Input Parameters:

 function = RY_WRITE

 *handle = handle of the dongle

 *p1 = location

*p2 = length

 buffer = pointer to the buffer

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

7. RY_RANDOM

For: Get a random number from the dongle

Calling API Functions

35

 Input Parameters:

 function = RY_RANDOM

 *handle = handle of the dongle

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful, the random number is carried by *p1, *p2, *p3, and *p4.

8. RY_SEED

For: Get the return code of the seed

 Input Parameters:

 function = RY_SEED

 *handle = handle of the dongle

 *lp2 = seed

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful:

 *p1 = return code 1

 *p2 = return code 2

 *p3 = return code 3

 *p4 = return code 4

9. [*] RY_WRITE_USERID

For: Write user-defined ID

 Input Parameters:

 function = RY_WRITE_USERID

 *handle = handle of the dongle

 *lp1 = user ID

 Return Values:

ROCKEY4 SMART User’s Guide v1.0

36

 If retcode = 0, the operation is successful; other values indicate errors.

10. RY_READ_USERID

 For: Read user-defined ID

 Input Parameters:

function = RY_READ_USERID

 *handle = handle of the dongle

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful, the user ID is carried by *lp1.

11. [*] RY_SET_MODULE

For: Set a module character and degression property

 Input Parameters:

 function = RY_SET_MODULE

 *handle = handle of the dongle

 *p1 = module number

 *p2 = user module character

 *p3 = if degression is allowed (1 = yes; 0 = no)

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

12. RY_CHECK_MODULE

 For: Check module property character

 Input Parameters:

 function = RY_CHECK_MODULE

 *handle = handle of the dongle

 *p1 = module number

Calling API Functions

37

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful:

 *p2 = 1 indicates that the module is valid

 *p3 = 1 indicates that the module can be decreased

13. [*] RY_WRITE_ARITHMETIC

 For: Write a self-defined algorithm to the dongle

 Input Parameters:

 function = RY_WRITE_ARITHMETIC

 *handle = handle of the dongle

 *p1 = location of algorithm area

 buffer = string of instructions of algorithm

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

14. RY_CALCULATE1

For: Let the dongle perform an operation in the specified way; the result depends on the user

algorithm

Input Parameters:

function = RY_CALCULATE1

 *handle = handle of the dongle

 *lp1 = start point of operation

 *lp2 = module number

 *p1 = input value 1

 *p2 = input value 2

 *p3 = input value 3

 *p4 = input value 4

ROCKEY4 SMART User’s Guide v1.0

38

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful:

 *p1 = return value 1

 *p2 = return value 2

 *p3 = return value 3

 *p4 = return value 4

15. RY_CALCULATE2

 For: Let the dongle perform an operation in the specified way; the result depends on the user

algorithm

 Input Parameters:

 function = RY_CALCULATE2

 *handle = handle of the dongle

 *lp1 = start point of operation

 *lp2 = seed

 *p1 = input value 1

 *p2 = input value 2

 *p3 = input value 3

 *p4 = input value 4

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful:

 *p1 = return value 1

 *p2 = return value 2

 *p3 = return value 3

 *p4 = return value 4

Calling API Functions

39

16. RY_CALCULATE3

 For: Let the dongle perform an operation in the specified way; the result depends on the user

algorithm

 Input Parameters:

 function = RY_CALCULATE3

 *handle = handle of the dongle

 *lp1 = start point of operation

 *lp2 = start address of module character

 *p1 = input value 1

 *p2 = input value 2

 *p3 = input value 3

 *p4 = input value 4

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful:

 *p1 = return value 1

 *p2 = return value 2

 *p3 = return value 3

 *p4 = return value 4

17. RY_DECREASE

 For: Perform a decrease operation on the specified module character

 Input Parameters:

 function = RY_DECREASE

 *handle = handle of the dongle

 *p1 = module number

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

ROCKEY4 SMART User’s Guide v1.0

40

18. [*] RY_SET_DES_KEY

 For: Set DES key

 Input Parameters:

 function = RY_SET_DES_KEY

 *handle = handle of the dongle

 *p1 = algorithm selection: 0 – DES; 1 - 3DES

 Buffer = 8 or 16-byte key

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

19. RY_ DES_ENC

 For: DES/3DES encryption

 Input Parameters:

 function = RY_ DES_ENC

 *handle = handle of the dongle

 *p1 = algorithm selection: 0 – DES; 1 - 3DES

 *p2 = length of the data to be encrypted; must be a multiple of 8

Buffer = data to be encrypted; maximum length is 1024 bytes each time

Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

20. RY_ DES_DEC

 For: DES/3DES decryption

 Input Parameters:

 function = RY_ DES_DEC

 *handle = handle of the dongle

 *p1 = algorithm selection: 0 – DES; 1 - 3DES

Calling API Functions

41

 *p2 = length of data to be decrypted; must be a multiple of 8

Buffer = data to be decrypted; maximum length is 1024 bytes each time

Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

21. [*] RY_SET_RSAKEY_N

 For: Set RSA private key – N; the public key is 65537

 Input Parameters:

 function = RY_SET_RSAKEY_N

 *handle = handle of the dongle

Buffer= RSA key N (0 - 127)

Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

22. [*] RY_SET_RSAKEY_D

 For: Set RSA private key – D; the public key is 65537

 Input Parameters:

 function = RY_SET_RSAKEY_D

 *handle = handle of the dongle

Buffer= RSA key D (0 - 127)

Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

23. RY_ RSA_ENC

 For: RSA encryption

 Input Parameters:

 function = RY_ RSA _ENC

 *handle = handle of the dongle

ROCKEY4 SMART User’s Guide v1.0

42

 *p1 = 0 (encryption with private key) or 1 (encryption with public key)

*p2 = length of data to be encrypted (p3=0); Rockey padding type

*p3 = Rockey padding (P3=0); no padding (P3=1)

Buffer = input parameter; maximum length is 120 bytes each time; 128 bytes returned

(cipher-text data)

Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

24. RY_ RSA_ DEC

 For: RSA decryption

 Input Parameters:

 function = RY_ RSA _ DEC

 *handle = handle of the dongle

 *p1 = 0 (decryption with private key) or 1 (decryption with public key)

*p2 = length of data to be decrypted (p3=0); Rockey padding type

*p3 = Rockey padding (P3=0); no padding (P3=1)

Buffer = input cipher-text data; length is 128 bytes; decrypted data returned

Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

25. [*] RY_SET_COUNTER

For: Set the value of a counter unit

Input Parameters:

function = RY_SET_COUNTER

*handle = handle of the dongle

*p1 = number of the counter unit starting from 0

*P2 = value of counter (WORD type)

*P3 = 1 (degression allowed) or 0 (degression not allowed)

Calling API Functions

43

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

26. RY_GET_COUNTER

For: Read the value of a counter unit

Input Parameters:

function = RY_GET_COUNTER

*handle = handle of the dongle

*p1 = number of the counter unit starting from 0

Output:

*P2 = value of counter (WORD type)

*P3 = 1 (degression allowed) or 0 (degression not allowed)

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

27. RY_DEC_COUNTER

For: Decrease the value of a counter unit by 1

Input Parameters:

function = RY_DEC_COUNTER

*handle = handle of the dongle

*p1 = number of the unit

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

28. [*] RY_SET_TIMER

For: Set the value of a timer unit

Input Parameters:

function = RY_SET_TIMER

ROCKEY4 SMART User’s Guide v1.0

44

*handle = handle of the dongle

*p1 = number of the timer unit starting from 0

*p2 = number of hours

*p4 = 0 (hours) or 1 (date)

buffer = a date and time value of SYSTEMTIME type (expiration date)

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

29. RY_GET_TIMER

For: Read the value of a timer unit

Input Parameters:

function = RY_GET_TIMER

*handle = handle of the dongle

*p1 = number of the timer unit starting from 0

Output:

*p2 = number of hours

*p4 = 0 (hours) or 1 (date)

buffer = a date and time value of SYSTEMTIME type (expiration date)

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

30. RY_ADJUST_TIMER

For: Synchronize the dongle clock with the computer time if the clock is earlier than the

computer time; do nothing if the clock is later than the computer time.

Input Parameters:

function = RY_ADJUST_TIMER

buffer = computer time of SYSTEMTIME type

Output:

Calling API Functions

45

buffer = If the function is called successfully, a time value of the dongle clock will be

returned (SYSTEMTIME type)

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

31. RY_READ_EX

For: Read user memory of the dongle (for version 1.03 or later)

 Input Parameters:

 function = RY_READ_EX

 *handle = handle of the dongle

 *p1 = location

*p2 = length

buffer = Pointer to buffer

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

 If the operation is successful, the content of the memory will be read into buffer.

32. RY_WRITE_EX

For: Write to user memory (for version 1.03 or later)

 Input Parameters:

 function = RY_WRITE_EX

 *handle = handle of the dongle

 *p1 = location

*p2 = length

 buffer = pointer to buffer

 Return Values:

 If retcode = 0, the operation is successful; other values indicate errors.

33. [*] RY_SET_COUNTER_EX

ROCKEY4 SMART User’s Guide v1.0

46

For: Set the value of a counter unit

Input Parameters:

function = RY_SET_COUNTER_EX

*handle = handle of the dongle

*p1 = number of the counter unit starting from 0

*P3 = 1 (degression allowed) or 0 (degression not allowed)

buffer[0~3] = value of the counter (DWORD type)

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

34. RY_GET_COUNTER_EX

For: Read the value of a counter unit

Input Parameters:

function = RY_GET_COUNTER_EX

*handle = handle of the dongle

*p1 = number of the counter unit starting from 0

Output:

*P3 = 1 (degression allowed) or 0 (degression not allowed)

buffer[0~3] = value of the counter (DWORD type)

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

35. [*] RY_SET_TIMER_EX

For: Set the value of a timer unit

Input Parameters:

function = RY_SET_TIMER_EX

*handle = handle of the dongle

*p1 = number of the timer unit starting from 0

Calling API Functions

47

*p3 = 1 (date) or 2 (hours)

buffer = a date and time value of SYSTEMTIME type (expiration date) or number of hours

(DWORD type)

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

36. RY_GET_TIMER_EX

For: Read the value of a timer unit. Before reading, you need to synchronize the dongle clock

with the computer time using RY_ADJUST_TIMER_EX function.

Input Parameters:

function = RY_GET_TIMER_EX

*handle = handle of the dongle

*p1 = number of the timer unit starting from 0

Output:

*p3 = 1 (date) or 2 (hours)

buffer = a date and time value of SYSTEMTIME type (expiration date) or number of hours

(DWORD type)

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

37. RY_ADJUST_TIMER_EX

For: Set the dongle clock to be the same as the computer if the clock is earlier than the

computer time; otherwise, nothing will be done.

Input Parameters:

function = RY_ADJUST_TIMER_EX

buffer = computer time of SYSTEMTIME type

Return Values:

If retcode = 0, the operation is successful; other values indicate errors.

ROCKEY4 SMART User’s Guide v1.0

48

38. RY_GET_TIME_DWORD

For: Convert a date and time value to a number of minutes elapsed from 00:00 (hh:mm) of

Jan. 1, 2006.

Input Parameters:

function = RY_GET_TIME_DWORD

*handle = handle of the dongle

*lp2 = year

*p1 = month

*p2 = day

*p3 = hour

*p4 = minute

Output:

*lp1 = number of minutes elapsed from 2006-1-1 00:00

If retcode = 0, the operation is successful; other values indicate errors.

39. For information on the interfaces related to update (RY_UPDATE_GEN_EX,

RY_UPDATE_EX, RY_SET_UPDATE_KEY, RY_ADD_UPDATE_HEADER,

RY_ADD_UPDATE_CONTENT), see ROCKEY4 SMART License Management and samples

in the SDK.

6.3 Error Codes

ERR_SUCCESS 0 No error
ERR_NO_ROCKEY 3 No ROCKEY4 SMART dongle found
ERR_INVALID_PASSWORD 4 ROCKEY4 SMART dongle found, but basic

password is not correct
ERR_INVALID_PASSWORD_OR_ID 5 Error password or hardware ID
ERR_SETID 6 Error in setting hardware ID

Calling API Functions

49

ERR_INVALID_ADDR_OR_SIZE 7 Error in reading/writing address or length
ERR_UNKNOWN_COMMAND 8 Invalid command
ERR_NOTBELEVEL3 9 Internal error
ERR_READ 10 Error in reading data
ERR_WRITE 11 Error in writing data
ERR_RANDOM 12 Error random number
ERR_SEED 13 Error seed code
ERR_CALCULATE 14 Error calculation
ERR_NO_OPEN 15 Dongle not opened before operation
ERR_OPEN_OVERFLOW 16 Too many dongles opened (>16)
ERR_NOMORE 17 No other dongle found
ERR_NEED_FIND 18 FindNext without Find once
ERR_DECREASE 19 Error degression
ERR_AR_BADCOMMAND 20 Error algorithm instruction
ERR_AR_UNKNOWN_OPCODE 21 Error algorithm operator
ERR_AR_WRONGBEGIN 22 The first instruction of the algorithm

contains a constant
ERR_AR_WRONG_END 23 The last instruction of the algorithm contains

a constant
ERR_AR_VALUEOVERFLOW 24 The value of the constant in the algorithm is

greater than 63
ERR_TOOMUCHTHREAD 25 The number of threads that open the dongle

in a process is greater than 100
ERR_RECEIVE_NULL 0x100 Cannot receive
ERR_UNKNOWN_SYSTEM 0x102 Unknown operating system
ERR_INVALID_RY4S 30 Attempt to operate a non-Rockey4 Smart

dongle
ERR_SET_DES_KEY 40 Error setting DES key
RR_DES_ENCRYPT 41 DES encryption error
ERR_DES_DECRYPT 42 DES decryption error
ERR_SET_RSAKEY_N 43 Error setting N of RSA key
RR_SET_RSAKEY_D 44 Error setting D of RSA key
ERR_RSA_ENCRYPT 45 RSA encryption error
ERR_RSA_DECRYPT 46 RSA decryption error
ERR_INAVLID_LENGTH 47 Invalid length of data
ERR_UNKNOWN 0xffff Unknown error

6.4 Basic Application Examples

Some program examples are provided to help beginners understand the use of the

ROCKEY4 Smart dongle. These programs are intended to demonstrate some functions of the

dongle only. To use the dongle in a smart way, you should make further development. Section 6.5

Advanced Application Examples is a good reference for some advanced encryption methods, but it

ROCKEY4 SMART User’s Guide v1.0

50

is only for reference. After all, the public experiences have no enough encryption strength to build

applications with high security.

Some key points that you need to pay attention to when programming:

1. P3 and P4 are Advanced passwords enabling developers like you to write to the dongle

when customizing the content of the dongle. They should always be set to zero in

software delivered to end users.

2. Make sure that none of the parameters in the ROCKEY4 Smart functions is a Null

pointer. For example, even if you do not require the Buffer in the above example, you

cannot pass a null to it, otherwise, the result is unpredictable.

The following sample programs are written in VC 6.0. The functions of the dongle will be

demonstrated step by step from an original program that is not encrypted yet. Developers who use

other languages should also read this section carefully. There is no special development skill used

below. The examples can be understood easily.

6.4.1 Unencrypted Program – Step 0
The following is a program that has not been encrypted:

#include <windows.h>
#include <stdio.h>

void main()
{

// Anyone begin from here.
 printf("Hello FeiTian!\n");
}

6.4.2 Finding Dongle – Step 1
At the beginning of the program, a segment of an operation of finding a dongle with

specified passwords is inserted. If the dongle is found, the program will proceed. Otherwise, the

program will exit.
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{

Calling API Functions

51

 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

 // Try to find specified ROCKEY4 SMART
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {

printf("ROCKEY not found!\n");
 return;
 }

 // ==
 printf("Hello FeiTian!\n");
}

This is a simple encryption method. Only a function of the ROCKEY4 SMART API is used.

For details on the function, see function “RY_FIND” in Section 6.2 “ROCKEY4 SMART API

Services”.

Try the above program to observe what happens when the dongle is connected and what

happens when it is not connected.

6.4.3 Opening Dongle – Step 2
At the beginning of the program, an operation of opening a dongle with specific passwords

is added. If the dongle can be opened, the program proceeds. Otherwise, the program exits.
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

ROCKEY4 SMART User’s Guide v1.0

52

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

 // Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;
 }

 retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error

{
 printf("Error Code: %d\n", retcode);
 return;
 }

 // ==

 printf("Hello FeiTian!\n");

 retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

}

6.4.4 User Memory – Step 3/Step 4
The dongle is initialized using the Editor (refer to Chapter 5) or in API mode. Write “Hello

FeiTian!” to the low address area and then read the string. See below in Step 3, Step 4.

Example: Initialize the dongle and write “Hello FeiTian!” – Step 3
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

Calling API Functions

53

void main()
{
 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

 // Try to find Rockey

retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;
 }

 retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

 p1 = 0; // Pos
 p2 = 14; // Length

 strcpy((char*)buffer, "Hello FeiTian! ");
 retcode = Rockey(RY_WRITE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }
 printf("Write: %s\n", buffer);

retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)
 {

ROCKEY4 SMART User’s Guide v1.0

54

 printf("Error Code: %d\n", retcode);
 return;
 }

}

In the above example (Step 3) we have written “Hello FeiTian!” into the dongle. Below in

the following example (Step 4) the string will be read and displayed from the dongle dynamically.

Example: Read content from the memory – Step 4
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

 // Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;
 }

 retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

 p1 = 0; // Pos
 p2 = 14; // Length

 buffer[14] = 0;

Calling API Functions

55

 retcode = Rockey(RY_READ, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

// ==
 printf("%s\n", buffer);

 retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

}

6.4.5 Generating a True Random Number with Dongle–
Step 5

Generate a random number at the beginning of the program. Write this random number to a

fixed address of the memory area of the dongle. Verify if the data at the address is equal to the

random number while the program is running. If the program is running on another computer in

this process, a different random number must have been written to the address. Therefore, the

ability to prevent tracing is enhanced.
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

ROCKEY4 SMART User’s Guide v1.0

56

 // Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;
 }

 retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

retcode = Rockey(RY_RANDOM, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }
 printf("Random:%04X,%04X,%04X,%04X\n", p1,p2,p3,p4);

sprintf(buffer, "%04X", p1);
p1 = 0; // Pos
p2 = 4; // Length
p3 = 1;

 retcode = Rockey(RY_WRITE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

printf("Write: %s\n", buffer);

p1 = 0; // Pos

 p2 = 4; // Length

 buffer[4] = 0;
 retcode = Rockey(RY_READ, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

Calling API Functions

57

 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

printf("Read: %s\n", buffer);

 if(buffer)

 printf("Hello FeiTian!\n");
else

 exit(0);

retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

}

6.4.6 Seed Code – Step 6/Step 7
The return code of the fixed seed is read using the Editor (refer to Chapter 5) or in API mode.

The seed may also be passed in from inner a program as required. The seed code calculation is

performed inside the dongle and the algorithm is confidential. Then you may verify the return

codes or use the return codes in an encryption routine. See below in Step 6, Step 7.

Example: Read the return code of the fixed seed (0x12345678) – Step 6
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

ROCKEY4 SMART User’s Guide v1.0

58

p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2

 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

 // Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");

 return;
 }

retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

 //seed Rockey
 lp2 = 0x12345678;
 retcode = Rockey(RY_SEED, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

// Close Rockey

 retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

printf("\n");

}

Example: Verify the return code to determine if the program can be continued – Step 7

Calling API Functions

59

#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 WORD retcode;

 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

// Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;
 }

retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

//seed Rockey
 lp2 = 0x12345678;
 retcode = Rockey(RY_SEED, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

if (p1==0xD03A && p2==0x94D6 && p3==0x96A9 && p4==0x7F54)

ROCKEY4 SMART User’s Guide v1.0

60

 printf("Hello FeiTian!\n");
else
{

printf("Hello error!\n");

return;

}

// Close Rockey
 retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

}

6.4.7 User ID – Step 8/Step 9
The user ID is written using the Editor (refer to Chapter 5) or in API mode. This can be used

in the aspects of software versions, product kinds, or other encryption processing. See Step 8 and

9.

Note: The advanced passwords (level 2 passwords) are required for

performing the operation at Step 8.

Example: Write a user ID to an initialized dongle – Step 8
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0x0799; // ROCKEY4 SMART Demo Password3
 p4 = 0xc43b; // ROCKEY4 SMART Demo Password4

Calling API Functions

61

// Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {

 printf("ROCKEY not found!\n");
 return;
 }

retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

lp1 = 0x88888888;
retcode = Rockey(RY_WRITE_USERID, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4,

buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }
 printf("Write User ID: %08X\n", lp1);

 retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

}

Example: Verify the user ID. If it is not 0x88888888, output “Hello DEMO!” – Step 9
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()

ROCKEY4 SMART User’s Guide v1.0

62

{
 // ==

 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2

p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

 // Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;
 }

 retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

lp1 = 0;
retcode = Rockey(RY_READ_USERID, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4,

buffer);
if (retcode) // Error

 {
 printf("Error Code: %d\n", retcode);
 return;
 }
 if (lp1==0x88888888)
 printf("Hello FeiTian!\n");
 else
 {

printf("Hello DEMO!\n");
return;

}
 retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)

Calling API Functions

63

{

 printf("Error Code: %d\n", retcode);
 return;
 }

}

6.4.8 Setting Module Characters – Step 10/Step 11/Step 12
Configure module character values and properties using the Editor (refer to Chapter 5) or in

API mode. Check if the module is valid and can be decreased in a user program. Determine

whether to activate the associated application module. The module character value may also be

used by the program. Check if the module is allowed to be decreased to limit the number of uses of

software. See below.

Note: The advanced passwords (level 2 passwords) are required for

performing the operation at Step 10.

Example: Set a module character for an initialized dongle (e.g. set Module 0 to be valid and

the property to be not decreasable) – Step 10
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0x0799; // ROCKEY4 SMART Demo Password3
 p4 = 0xc43b; // ROCKEY4 SMART Demo Password4

 // Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;

ROCKEY4 SMART User’s Guide v1.0

64

 }

retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

 p1 = 0;
 p2 = 3;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }
 printf("Set Moudle 0: Pass = %04X Decrease not allowed\n", p2);

retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

}

Example: Output “Hello FeiTian!” in a user program if the module 0 is valid; otherwise, the

program stops running or exits – Step 11
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable

Calling API Functions

65

 BYTE buffer[1024]; // ROCKEY4 SMART Variable

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

// Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;
 }

retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

p1 = 0;
 retcode = Rockey(RY_CHECK_MODULE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

if (p2)
 printf("Hello FeiTian!\n");
else
 return;

retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)

{

 printf("Error Code: %d\n", retcode);
 return;

ROCKEY4 SMART User’s Guide v1.0

66

 }
}

Example: At Step 10, set p2=3 (allowed number of uses) and p3=1 (degression

allowed). That is to say, the number of uses of the software is limited to 3 through

Module 0 (p1=0) The usage limitation is achieved as shown in another example - Step

12:
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{
 // ==
 WORD retcode;
 WORD handle, p1, p2, p3, p4; // ROCKEY4 SMART Variable
 DWORD lp1, lp2; // ROCKEY4 SMART Variable
 BYTE buffer[1024]; // ROCKEY4 SMART Variable

 p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
 p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
 p3 = 0; // Program needn't Password3, Set to 0
 p4 = 0; // Program needn't Password4, Set to 0

// Try to find specified Rockey
 retcode = Rockey(RY_FIND, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Not found
 {
 printf("ROCKEY not found!\n");
 return;
 }

retcode = Rockey(RY_OPEN, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;

}
p1 = 0;

 retcode = Rockey(RY_CHECK_MODULE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);

Calling API Functions

67

 if (retcode)
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

if (p2!=1)
{
 printf("Update Please!\n");

return;
}

if(p3==1)
{
 p1=0;
 retcode = Rockey(RY_DECREASE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4,

buffer);
 if(retcode)

 {
 printf("Error Code: %d\n", retcode);
 return;

 }

}

// ==

 printf("Hello FeiTian!\n");

retcode = Rockey(RY_CLOSE, &handle, &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)

{
 printf("Error Code: %d\n", retcode);
 return;
 }

}

6.4.9 Dongle Cascading – Step 13
We can plug in more than one ROCKEY4 SMART dongle with the same passwords, either with
identical type or not. Since each dongle has a unique hardware ID, it is possible for the program to
identify which dongle is opened, and then further distinguish the type of the opened dongle. An
example is shown below in Step 13:#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

ROCKEY4 SMART User’s Guide v1.0

68

void main()
{

int i, rynum;
WORD retcode;
WORD handle[16], p1, p2, p3, p4; // ROCKEY4 SMART Variable
DWORD lp1, lp2; // ROCKEY4 SMART Variable
BYTE buffer[1024]; // ROCKEY4 SMART Variable

p1 = 0xc44c; // ROCKEY4 SMART Demo Password1
p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
p3 = 0; // Program needn't Password3, Set to 0
p4 = 0; // Program needn't Password4, Set to 0

// Try to find all Rockey
for (i=0;i<16;i++)
{

 if (0 == i)
 {

retcode = Rockey(RY_FIND, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
if (retcode == ERR_NOMORE)
break;

 }
 else
 {
 // Notice : lp1 = Last found hardID
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE)

break;
 }

 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);

 return;
 }

 printf("Found Rockey: %08X ", lp1);

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);

Calling API Functions

69

return;

 }

 }
 printf("\n");

 rynum = i;

 // Do our work
 for (i=0;i<rynum;i++)
 {
 // Read Rockey user memory
 p1 = 0; // Pos
 p2 = 12; // Length

 buffer[12] = 0;
 retcode = Rockey(RY_READ, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {

 printf("Error Code: %d\n", retcode);
 return;
 }
 printf("%s\n", buffer); // Output

lp1=0;
retcode = Rockey(RY_READ_USERID, &handle[i], &lp1, &lp2, &p1, &p2, &p3,

&p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }
 printf("Read User ID: %08X\n", lp1);

 p1=0;

retcode = Rockey(RY_CHECK_MODULE, &handle[i], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

ROCKEY4 SMART User’s Guide v1.0

70

 printf("Check Moudle 0: ");
 if (p2)

printf("Allow ");
 else

printf("No Allow ");
 if (p3)

printf("Allow Decrease\n");
 else

printf("Not Allow Decrease\n");

}

 // Close all opened Rockey
 for (i=0;i<rynum;i++)
 {
 retcode = Rockey(RY_CLOSE, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)

 {
 printf("Error Code: %d\n", retcode);
 return;
 }
 }
}

A maximum of 16 dongles can be attached to the same computer at the same time.

The program can be designed to selectively access any dongles.

In the above program, we define a handle array to save the opened dongle handles,

and prepare for the next operation on the specified dongle. We open the dongle at the

same time as we find it, and we close all opened dongle handles before the program exits.

Developers are better off operating in this manner. For a large program, it is OK to

open/close the dongle just once at the beginning/end of the program. Frequent openning

and closing operations will reduce the performance of the program. Don’t worry,

because our opening is in shared mode. Even if another program of yours needs to open

the dongle at the same time, the program will not be blocked.

Note: Functions RY_OPEN and RY_CLOSE are called above. The dongle

Calling API Functions

71

must be opened first for most operations, except for RY_FIND and

RY_FIND_NEXT. This is similar to the operation on the disk files. You should close

the dongle immediately after finishing dongle related operations.

You can find the source code of the above programming examples on the CD or

from the installation directory under “Samples”.

6.5 Advanced Application Examples
To facilitate the developers to master programming with the dongle as soon as

possible, in the following sections we provide several programming examples for

references, according to the flexible extension of the basic functions. Note that these

examples are provided in order to illustrate part of the functions provided by ROCKEY4

SMART, and the comprehensive and flexible applications. How to make good use of the

dongle is not fully represented in the examples, and requires the developers to combine

with the specific environment. The following examples are only for references. After all,

the public experiences have no encryption strength. (If you are familiar with the API

calling already, you may skip to Chapter 7 ROCKEY4 SMART Hardware Algorithms.)

6.5.1 User Memory Area Applications
Example – Step 14: To use the ROCKEY4 SMART dongle to encrypt the string “Hello

FeiTian!”, usually you can write the string into a certain location in the dongle’s user memory

space all together at one time. However, the security level can be further enhanced if you write

every subarea separately and then combine them.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

ROCKEY4 SMART User’s Guide v1.0

72

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];
 BYTE buf[1024];

 int i, j;

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0;
 p4 = 0;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

Calling API Functions

73

 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {

 p1 = 0;
 p2 = 10;
 p3 = 1;
 strcpy((char*)buffer, "Hello ");
 retcode = Rockey(RY_WRITE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }
 printf("Write: Hello \n");

 p1 = 12;
 p2 = 12;
 p3 = 1;
 strcpy((char*)buffer, "FeiTian!");
 retcode = Rockey(RY_WRITE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write: FeiTian!\n");

 p1 = 0;
 p2 = 10;

 memset(buffer, 0, 64);

ROCKEY4 SMART User’s Guide v1.0

74

 retcode = Rockey(RY_READ, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }
 printf("Read: %s\n", buffer);

 p1 = 12;
 p2 = 12;

 memset(buf, 0, 64);
 retcode = Rockey(RY_READ, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buf);
 if (retcode)

 {
 ShowERR(retcode);
 return;
 }
 printf("Read: %s\n", buf);

 printf("\n");
 printf("%s\n", strcat(buffer,buf));

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)

 {
 ShowERR(retcode);
 return;
 }

 }

}

Example – Step 15: To encrypt and control execution of different modules of the

application with the user memory area of the ROCKEY4 SMART dongle, you can write a serial

number to a location of the user memory area and verify it during the execution of different

modules.

Calling API Functions

75

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{

 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)

 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,

ROCKEY4 SMART User’s Guide v1.0

76

buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 p1 = 0;

 p2 = 12;
 p3 = 1;
 strcpy((char*)buffer, "a1b2c3d4e5f6");

retcode = Rockey(RY_WRITE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write:a1b2c3d4e5f6\n");

 p1 = 0;
 p2 = 2;

 memset(buffer, 0, 64);
 retcode = Rockey(RY_READ, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)

Calling API Functions

77

 {
 ShowERR(retcode);
 return;
 }
 printf("Read: %s\n", buffer);

 if (!strcmp(buffer,"a1"))
 printf("Run Module 1\n");
 else

 break;

 p1 = 2;
 p2 = 2;

 memset(buffer, 0, 64);
 retcode = Rockey(RY_READ, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;

 }
 printf("Read: %s\n", buffer);

 if (!strcmp(buffer,"b2"))
 printf("Run Module 2\n");
 else
 break;

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("\n");

 }

ROCKEY4 SMART User’s Guide v1.0

78

}

Example – Step 16: To encrypt and control the number of uses with the user memory area,

you can write a number to the area and decrease it when the application is executed. This step can

be combined with Step 12 for encryption.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{

 WORD handle[16], p1, p2, p3, p4, retcode;

 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j,num;

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0;
 p4 = 0;

 {

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

Calling API Functions

79

 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)
 {
 ShowERR(retcode);

 return;
 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 p1 = 0;
 p2 = 2;
 p3 = 1;
 strcpy((char*)buffer, "03");
 retcode = Rockey(RY_WRITE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,

ROCKEY4 SMART User’s Guide v1.0

80

buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write: 03\n");
 p1 = 0;
 p2 = 1;
 memset(buffer, 0, 64);
 retcode = Rockey(RY_READ, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Read: %s\n", buffer);

 num=atoi(buffer);

 if(num)
 {
 printf("Hello FeiTian!\n");
 num--;
 }
 else
 {
 return;
 }
 p1 = 0;
 p2 = 1;
 sprintf(buffer, "%ld", num);
 retcode = Rockey(RY_WRITE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write: %ld\n",num);

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;

Calling API Functions

81

 }
 printf("\n");

 }
 }

}

6.5.2 Seed Applications

Example – Step 17: You may use different seed codes for different software modules

or in different places in the application. Then verify the seed codes in the application.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;

 printf("Error Code: %d\n", retcode);
}

void main()
{

 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0;
 p4 = 0;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

ROCKEY4 SMART User’s Guide v1.0

82

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)
 {
 ShowERR(retcode);
 return;

 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {

 lp2 = 0x12345678;
 retcode = Rockey(RY_SEED, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

Calling API Functions

83

 if(p1==0xD03A && p2==0x94D6 && p3==0x96A9 && p4==0x7F54)
 printf("Hello Fei!\n");
 else
 break;
 lp2 = 0x87654321;
 retcode = Rockey(RY_SEED, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

 if(p1==0xB584 && p2==0xD64F && p3==0xC885 && p4==0x5BA0)

printf("Hello Tian!\n");
 else

 break;

lp2 = 0x18273645;
 retcode = Rockey(RY_SEED, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

 if(p1==0x2F6D && p2==0x27F8 && p3==0xB3EE && p4==0xBE5A)
 printf("Hello OK!\n");
 else
 break;

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("\n");

 }

}

Example – Step 18: A string is encrypted with a key and then decrypted. The seed code is

ROCKEY4 SMART User’s Guide v1.0

84

used to generate the key.

The following illustrates the function of seed code. In your development, the following

should be divided into two parts: the encryption part should be done before the dongle is delivered;

only the decryption part should be presented in user program.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()

{
 char str[20] = "Hello FeiTian!";
 DWORD mykey = 12345678;
 int n, slen;

 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i,j;

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

Calling API Functions

85

 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)

 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 // Encrypt my data
 slen = strlen(str);
 lp2 = mykey;
 retcode = Rockey(RY_SEED, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
 }

 for (n=0;n<slen;n++)
 {
 str[n] = str[n] + (char)p1 + (char)p2 + (char)p3 + (char)p4;
 }

printf("Encrypted data is %s\n", str);

ROCKEY4 SMART User’s Guide v1.0

86

 // Decrypt my data
 lp2 = mykey;
 retcode = Rockey(RY_SEED, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode) // Error
 {
 printf("Error Code: %d\n", retcode);
 return;
.
 }

 for (n=0;n<slen;n++)
 {
 str[n] = str[n] - (char)p1 - (char)p2 - (char)p3 - (char)p4;
 }
 printf("Decrypted data is %s\n", str);

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("\n");

 }

}

6.5.3 User ID Applications

Example – Step 19: Developers may write the current date and time as the UID when

initializing the dongle. When the software is running, compare the current system date and time

with the UID. Typically, the current system date and time should be later than the UID.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

Calling API Functions

87

void main()
{

 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];
 BYTE buf[1024];

 int i, j;

 SYSTEMTIME st;

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);
 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

if (retcode)

 {

 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

ROCKEY4 SMART User’s Guide v1.0

88

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {

 lp1 = 0x20021101;
 retcode = Rockey(RY_WRITE_USERID, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

 return;
 }

 printf("Write User ID: %08X\n", lp1);

lp1 = 0;
 retcode = Rockey(RY_READ_USERID, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Read User ID: %08X\n", lp1);

sprintf(buffer,"%08X",lp1);
 GetLocalTime(&st);
 printf("Date:%04d%02d%02d\n",st.wYear,st.wMonth,st.wDay);

sprintf(buf,"%04d%02d%02d",st.wYear,st.wMonth,st.wDay);
 if(strcmp(buf,buffer)>=0)

Calling API Functions

89

 {
 printf("ok!\n");
 }
 else

 break;

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("\n");

 }

}

6.5.4 Module Applications
Example – Step 20: Multiple module encryptions allow you to use different dongle modules

to control if the corresponding application modules can execute or be enabled.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}
void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;

 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;

ROCKEY4 SMART User’s Guide v1.0

90

 p4 = 0xc43b;

 {
 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)

 {
 ShowERR(retcode);
 return;
 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 p1 = 0;

Calling API Functions

91

 p2 = 0x2121;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

 p1 = 0;

 retcode = Rockey(RY_CHECK_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);

 if (retcode)

 {
 ShowERR(retcode);
 return;
 }
 printf("Check Moudle 0: ");
 if (p2)
 printf("Run Modul 1!\n");
 else
 break;

 printf("\n");

 p1 = 8;
 p2 = 0xFFFF;

 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 8: Pass = %04X Decrease no allow\n", p2);

 p1 = 8;
 retcode = Rockey(RY_CHECK_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3,

ROCKEY4 SMART User’s Guide v1.0

92

&p4, buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }
 printf("Check Moudle 8: ");
 if (p2)
 printf("Run Modul 2!");
 else
 break;

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("\n");

 }
 }

}

Example – Step 21: This program illustrates how to perform multi-module encryption and

check the status of the modules. Many applications are segmented into program modules that users

may choose or purchase separately. For example, a user may purchase three modules of a

four-module application. Developers can specify that the three modules are valid in the dongle. If

the user wants one more module, developers need only to produce a new dongle in which the

required module is activated and deliver it to the user, thanks for the cascading functionality of the

Rockey4 SMART dongle, without returning the previously delivered dongle, updating it, and

sending it back.
#include <windows.h>
#include <stdio.h>
#include “Ry4S.h” // Include ROCKEY4 SMART Header File

void main()
{

int i, j, rynum;

Calling API Functions

93

WORD retcode;
DWORD HID[16];

WORD handle[16], p1, p2, p3, p4; // ROCKEY4 SMART Variable
DWORD lp1, lp2; // ROCKEY4 SMART Variable
BYTE buffer[1024]; // ROCKEY4 SMART Variable

p1 = 0xc44c; // ROCKEY4 SMART Demo Password1

p2 = 0xc8f8; // ROCKEY4 SMART Demo Password2
p3 = 0; // Program needn't Password3, Set to 0
p4 = 0; // Program needn't Password4, Set to 0

// Try to find all Rockey
for (i=0;i<16;i++)
{

if (0 == i)
{

retcode = Rockey(RY_FIND, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode == ERR_NOMORE) break;
 }
 else
 {
 // Notice : lp1 = Last found hardID
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);

if (retcode == ERR_NOMORE) break;

 }

if (retcode) // Error
{

 printf("Error Code: %d\n", retcode);
 return;
 }

 printf("Found Rockey: %08X\n", lp1);
 HID[i] = lp1; // Save HardID

retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
if (retcode) // Error

 {
 printf("Error Code: %d\n", retcode);

 return;
 }

}
printf("\n");

ROCKEY4 SMART User’s Guide v1.0

94

rynum = i;

// Do our work
for (i=0;i<rynum;i++)
{

printf("Rockey %08X module status: ", HID[i]);
for (j=0;j<16;j++)
{

p1 = j; // Module No
retcode = Rockey(RY_CHECK_MODULE, &handle[i], &lp1, &lp2, &p1, &p2, &p3,

&p4, buffer);
if (retcode) // Error
{

printf("Error Code: %d\n", retcode);
return;

}
if (p2) printf("O");
else printf("X");

}
printf("\n");

}

// Close all opened Rockey

for (i=0;i<rynum;i++)
{

retcode = Rockey(RY_CLOSE, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
if (retcode)
{

printf("Error Code: %d\n", retcode);
return;

}

}

}

The above program searches all dongles with the same passwords attached to the computer

and displays the status of each module. “O” means that the module has been activated; and “X”

means that the module has not been activated. You can write some module values with the Editor

and check them as illustrated here. Note that if the content of the module is 0, the module is

inactive; otherwise, the module is active.

Calling API Functions

95

If a module is active, the module can be used. Check the status of the module in your

programs. If a module is active for any one of the dongles, the corresponding program module is

available.

6.5.5 Dongles with Same UID for Different Software
Products

If your company has developed multiple software products but only used the dongles with

one user ID (identical user ID dongles) the following solution can be used to realize the

corresponding relationship between dongle and software.

Example – Step 22: Use the memory area of the dongle to recognize the relationship

between a set of dongles and a product. For example, the content of the user memory area is

“Ver10”, the corresponding software product is Software A.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 WORD handleEnd;

 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 {
 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

ROCKEY4 SMART User’s Guide v1.0

96

 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)

 {

 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)

 {
 ShowERR(retcode);
 return;
 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 /*p1 = 0;

 p2 = 5;

Calling API Functions

97

 p3 = 1;
 strcpy((char*)buffer, "Ver10");
 retcode = Rockey(RY_WRITE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write:%s\n",buffer);

 */
 p1 = 0;
 p2 = 5;

 memset(buffer, 0, 64);
 retcode = Rockey(RY_READ, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Read: %s\n", buffer);

 if (!strcmp(buffer,"Ver10"))
 {
 handleEnd=handle[j];
 break;
 }

 }

 { //=========A==========
 retcode = Rockey(RY_RANDOM, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Random: %04X\n", p1);

 lp2 = 0x12345678;
 retcode = Rockey(RY_SEED, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)

ROCKEY4 SMART User’s Guide v1.0

98

 {
 ShowERR(retcode);
 return;
 }
 printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

 retcode = Rockey(RY_CLOSE, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }

 printf("\n");

 }
 }

}

Example – Step 23: Recognize the relationship between a set of dongles and a software

product with the user ID of the dongle. For example, if the encrypted user ID is “11111111” (hex),

the corresponding software is Software A.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 WORD handleEnd;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

Calling API Functions

99

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 {

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);

 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i++;
 printf("Find Rock: %08X\n", lp1);
 }

ROCKEY4 SMART User’s Guide v1.0

100

 printf("\n");

 for (j=0;j<i;j++)
 {

 /*lp1= 0x11111111;
 retcode = Rockey(RY_WRITE_USERID, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write User ID: %08X\n", lp1);
 */

 lp1 = 0;
 retcode = Rockey(RY_READ_USERID, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }
 if(lp1==0x11111111)
 {
 handleEnd=handle[j];
 break;
 }

 }

 { //=======A=============

 p1 = 0;
 p2 = 12;
 p3 = 1;
 strcpy((char*)buffer, "Hello Feitian!");
 retcode = Rockey(RY_WRITE, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write: %s\n",buffer);

Calling API Functions

101

 p1 = 0;
 p2 = 12;

 buffer[512]=0;
 retcode = Rockey(RY_READ, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Read: %s\n",buffer);

 retcode = Rockey(RY_RANDOM, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Random: %04X\n", p1);

 lp2 = 0x12345678;
 retcode = Rockey(RY_SEED, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

 retcode = Rockey(RY_CLOSE, &handleEnd, &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("\n");

 }
 }

}

ROCKEY4 SMART User’s Guide v1.0

102

ROCKEY4 SMART Hardware Algorithms

103

Chapter 7 ROCKEY4 SMART

Hardware Algorithms

You can write some self-defined algorithms to the ROCKEY4 SMART dongle, use the dongle

to do some necessary calculations, or use the calculation results in the programs. Since the algorithm

area of the dongle cannot be read, even the manufacturer cannot get the information on what has been

written by a developer. Thus we realize the software encryption protection to the maximum level.

The algorithm can be defined and written with the Editor. Alternatively, you can use the API

interface RY_WRITE_ARITHMETIC to write the algorithm. Actually, it is easy to develop and add

an algorithm to the ROCKEY4 SMART dongle. We provide detailed introduction below for the

developers to understand and master the techniques.

7.1 Introduction to Self-defined Algorithms

7.1.1 Instruction Format
All instructions must be in the format: reg1 = reg2 op reg3/value, where reg1, reg2 and reg3

are registers; value is a number; and op is an operator. For example: A = A + B.

The ROCKEY4 SMART supports the following operations:

+: Addition

-: Subtraction

<: Cyclic left shift

*: Multiplication

^ : XOR

&: And

|: Or

ROCKEY4 SMART User’s Guide v1.0

104

?: Comparison

value is a decimal figure between 0 and 63.

Note:

? is used to compare two operands. For example: if C = A ? B, the result is as follows:
C A?B B?A

A<B 0 FFFF
A=B FFFF FFFF
A>B FFFF 0

0 or FFFF will be written to C.

An example of algorithm written to the dongle:

A = A + B, B = B + E, C = A * F, D = B + C, H = H ^ H

A, B, C ... are all registers in the dongle. They are 16-bit units. There are 8 such registers inside

the dongle, with identifiers of A, B, C, D, E, F, G, and H respectively.

7.1.2 Internal Algorithms & Application Interface

After the developers have written an algorithm, how can a program call the algorithm and get

the result? The dongle is provided with 3 internal algorithms, which can be used to call the

self-defined algorithms in API mode: RY_CALCULATE1, RY_CALCULATE2, and

RY_CALCULATE3.

Basically, the usage of the 3 algorithms has no difference (we will describe their difference

later). All of them use p1, p2, p3, and p4 for passing in/out parameters.

In:

Internal register A of dongle = p1 of user program

Internal register B of dongle = p2 of user program

Internal register C of dongle = p3 of user program

Internal register D of dongle = p4 of user program

The register variables whose values may vary depending on the algorithm that is used:

Internal register E

Internal register F

ROCKEY4 SMART Hardware Algorithms

105

Internal register G

Internal register H

Out:

p1 of user program = Internal register A of dongle

p2 of user program = Internal register B of dongle

p3 of user program = Internal register C of dongle

p4 of user program = Internal register D of dongle

Thus, the registers A, B, C, and D are used as user interface variables; and the registers E, F, G,

and H are used as internal variables.

7.1.3 Difference Between Three Algorithms

According to the previous introduction, we know that for all of the three algorithsms, p1, p2, p3

and p4 correspond to registers A, B, C and D respectively. In fact, the key difference between the

algorithms resides in registers E, F, G and H.

When a developer’s internal program (in the dongle) is called, registers A, B, C and D have

already been set with data passed in by p1, p2, p3 and p4 before the internal program is executed. But

the contents of registers E, F, G and H are neither 0 nor some random number. They are initialized

according to the calculation algorithms that are used. See below:

Table 7-1
Internal variables of dongle RY_CALCULATE1
A P1
B P2
C P3
D P4
E High 16 bits of hardware ID
F Low 16 bits of hardware ID
G Content of module (according to the

module number passed in through *lp2)
H Random number

Table 7-2
Internal variables of dongle RY_CALCULATE2

ROCKEY4 SMART User’s Guide v1.0

106

A P1
B P2
C P3
D P4
E Return code 1 of seed (according to the

seed in *lp2)
F Return code 2 of seed (according to the

seed in *lp2)
G Return code 3 of seed (according to the

seed in *lp2)
H Return code 4 of seed (according to the

seed in *lp2)

Table 7-3
Internal variables of dongle RY_CALCULATE3
A P1
B P2
C P3
D P4
E Value in module *lp2
F Value in module (*lp2 + 1)
G Value in module (*lp2 + 2)
H Value in module (*lp2 + 3)

7.1.4 API Interfaces of User Program
Below, let us further describe the detailed function explanation and the additional descriptions

of these three self-defined algorithms, combining with the ROCKEY4 SMART API introduced in the

previous chapter.
Function RY_CALCULATE1
For Perform a dongle operation as specified
Input
Parameters

function = RY_CALCULATE1
*handle = handle of the dongle
*lp1 = starting point of calculation
*lp2 = module number
*p1 = input value 1
*p2 = input value 2
*p3 = input value 3
*p4 = input value 4

Return
Values

If 0 is returned, the operation is successful. Other values indicate errors.
If successful:
*p1 = return value 1

ROCKEY4 SMART Hardware Algorithms

107

*p2 = return value 2
*p3 = return value 3
*p4 = return value 4

Additional
Descriptions

For example: Algorithm in the dongle is A = B + C, then
The result of calling with this function is *p1 = *p2 + *p3.
For example: Algorithm in the dongle is A = A + G, then
If *p1 = 0 when passing in, when returning the content of *p1 equals to the value in
the module specified by *lp2.
Here you should see that although you cannot read the content of a module directly,
you could determine the content using an algorithm. If possible, you had better check
the content out with an algorithm.

Function RY_CALCULATE2
For Perform a dongle operation as specified
Input
Parameters

function = RY_CALCULATE2
*handle = handle of the dongle
*lp1 = starting point of calculation
*lp2 = seed
*p1 = input value 1
*p2 = input value 2
*p3 = input value 3
*p4 = input value 4

Return
Values

If 0 is returned, the operation is successful. Other values indicate errors.
If successful:
*p1 = return value 1
*p2 = return value 2
*p3 = return value 3
*p4 = return value 4

Additional
Descriptions

When calling an algorithm using this function by the dongle, the initial values of
registers E, F, G, and H are the return values of the seed in *lp2. In other words, the
dongle calls function RY_SEED with the value of *lp2, and places the return codes
into registers E, F, G, and H for further user processing.

Function RY_CALCULATE3
For Perform a dongle operation as specified
Input
Parameters

function = RY_CALCULATE3
*handle = handle of the dongle
*lp1 = starting point of calculation
*lp2 = starting module number
*p1 = input value 1
*p2 = input value 2
*p3 = input value 3
*p4 = input value 4

Return
Values

If 0 is returned, the operation is successful. Other values indicate errors.
If successful:

ROCKEY4 SMART User’s Guide v1.0

108

*p1 = return value 1
*p2 = return value 2
*p3 = return value 3
*p4 = return value 4

Additional
Descriptions

When calling an algorithm using this function by the dongle, the initial values of
registers E, F, G, and H are the contents of 4 successive modules starting from the
module specified by *lp2. For example:
If *lp2 = 0, the initial values of registers E, F, G, and H when calling this function
are:
E = content of Module 0
F = content of Module 1
G = content of Module 2
F = content of Module 3
Note:
When the address of the moudule is greater than 63, the address will automatically go
back to 0. For example, if *lp2 = 63, the initial values of registers E, F, G, and H
when calling this function are:
E = content of Module 63
F = content of Module 0
G = content of Module 1
H = content of Module 2

7.2 Writing Self-defined Algorithms
7.2.1 Writing Algorithm

You can write an algorithm using the Editor. Alternatively, you can develop a program to write

the algorithm with RY_WRITE_ARITHMETIC API function.
Function RY_WRITE_ARITHMETIC
For Write self-defined algorithms of developers
Input
Parameters

function = RY_WRITE_ARITHMETIC
*handle = handle of the dongle
*p1 = starting point of calculation
*buffer = a string of instructions of the algorithm

Return
Values

If 0 is returned, the operation is successful; other values indicate errors.

For example:

strcpy(buffer，"A=A+E，A=A+F，A=A+G，A=A+H");

p1 = 3;

retcode= Rockey(RY_WRITE_ARITHMETIC，handle，&lp1，&lp2，&p1，&p2，&p3，

ROCKEY4 SMART Hardware Algorithms

109

&p4，buffer);

Obviously, the algorithm to be written is stored into the buffer, with instructions separated

by commas. The dongle will automatically set the first instruction as the beginning of the

algorithm, and the last instruction as the end of the algorithm. In this case:

Address 3 of algorithm area: A=A+E

Address 4 of algorithm area: A=A+F

Address 5 of algorithm area: A=A+G

Address 6 of algorithm area: A=A+H

Address 3 is the starting point of the algorithm in dongle program area. Address 6 is the

ending point of the algorithm in dongle program area. After the instruction at address 6 is

executed, the dongle will return to the user program. If you want to call the program in the

dongle, you must start from the starting point. Otherwise, you will get the result of 4 random

numbers.

7.2.2 Instruction Conventions

There are some restrictions on the instructions of an algorithm. The restrictions (or conventions)

are described in the following examples:

A = A + B Valid

D = D ^ D Valid

A = B Invalid, must be in algorithm format, e.g. A = B | B

A = 0 Invalid, must be in algorithm format, e.g. A = A ^ A

C = 3 * B Invalid, constants must be postpositioned, e.g. C = B * 3

D = 3 + 4 Invalid, only one constant is allowed in an instruction

A = A / B Invalid, the division operator is not supported

H = E*200 Invalid, the constant must be less than 64

A = A*63 It depends. Constants are not allowed in the first or last instruction. If this

instruction appears in the middle, it is valid, if it is the first or last instruction, it is invalid.

ROCKEY4 SMART User’s Guide v1.0

110

7.3 Examples of Use of User-defined Algorithms

7.3.1 Basic Appliation Examples

1）Algorithm 1

First, write an algorithm. Note that an algorithm should only be written during development,

and it should not appear in the end user program.

p1 = 0;

strcpy(buffer，"H=H^H，A=A*23，F=B*17，A=A+F，A=A+G，A=A<C，A=A^D，B=B^B，

C=C^C，D=D^D");

retcode = Rockey(RY_WRITE_ARITHMETIC，handle，&lp1，&lp2，&p1，&p2，&p3，

&p4，buffer);

Then, call the algorithm in the program:

lp1 = 0; // starting point of the algorithm in the dongle

lp2 = 7; // specified module number

p1 = 5; // initial value of A

p2 = 3; // initial value of B

p3 = 1; // initial value of C

p4 = 0xffff; // initial value of D

retcode = Rockey(RY_CALCULATE1，handle，&lp1，&lp2，&p1，&p2，&p3，&p4，buffer);

The dongle carries the following initial values, and starts to execute the instructions from

algorithm area 0:

A = 5 (p1)

B = 3 (p2)

C = 1 (p3)

D = 0xffff (p4)

E = High 16 bits of ID

F = Low 16 bits of ID

ROCKEY4 SMART Hardware Algorithms

111

G = Content of Module 7 (lp2)

H = Random number

If the content of Module 7 is 0x2121, the result will be:

((5*23 + 3*17 + 0x2121) < 1) ^ 0xffff = 0xbc71

Example of Algorithm 1 – Step 24:

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

 char cmd[] = "H=H^H, A=A*23, F=B*17, A=A+F, A=A+G, A=A<C, A=A^D, B=B^B,
C=C^C, D=D^D";
 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

ROCKEY4 SMART User’s Guide v1.0

112

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)

 {

 ShowERR(retcode);
 return;

 }

 i++;

 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 /*
 p1 = 7;
 p2 = 0x2121;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {

ROCKEY4 SMART Hardware Algorithms

113

 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);
 printf("\n");
 */

 p1 = 0;
 strcpy((char*)buffer, cmd);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic 1\n");

 lp1 = 0;
 lp2 = 7;

 p1 = 5;
 p2 = 3;

 p3 = 1;
 p4 = 0xffff;
 retcode = Rockey(RY_CALCULATE1, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Calculate Input: p1=5, p2=3, p3=1, p4=0xffff\n");

 printf("\n");
 printf("Result = ((5*23 + 3*17 + 0x2121) < 1) ^ 0xffff = 0xBC71\n");
 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

ROCKEY4 SMART User’s Guide v1.0

114

 printf("\n");

 }

}

2）Algorithm 2

Example of Algorithm 2 – Step 25: Write algorithm ("A=A+B, A=A+C, A=A+D, A=A+E,

A=A+F, A=A+G, A=A+H"); according to input parameters and internal variables, the result is:

0x7b17

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

 char cmd1[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

ROCKEY4 SMART Hardware Algorithms

115

 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i++;

 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {

 /*
 lp2 = 0x12345678;

ROCKEY4 SMART User’s Guide v1.0

116

 retcode = Rockey(RY_SEED, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);
 printf("\n");

 */

 p1 = 10;

 strcpy((char*)buffer, cmd1);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic 2\n");

 lp1 = 10;
 lp2 = 0x12345678;
 p1 = 1;
 p2 = 2;
 p3 = 3;
 p4 = 4;
 retcode = Rockey(RY_CALCULATE2, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");

 printf("\n");
 printf("Result =d03a + 94d6 + 96a9 + 7f54 + 1 + 2 + 3 + 4=0x7b17\n");
 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;

ROCKEY4 SMART Hardware Algorithms

117

 }

 printf("\n");

 }

}

3）Algorithm 3

Example of Algorithm 3 – Step 26: Write algorithm ("A=A+B, A=A+C, A=A+D, A=A+E,

A=A+F, A=A+G, A=A+H"); according to input parameters and internal variables, the result is: 0x14

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

 char cmd2[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

ROCKEY4 SMART User’s Guide v1.0

118

 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)

 {
 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i++;

 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 /*
 p1 = 0;

ROCKEY4 SMART Hardware Algorithms

119

 p2 = 1;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {

 ShowERR(retcode);

 return;
 }
 printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

 p1 = 1;
 p2 = 2;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);

 p1 = 2;
 p2 = 3;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

 p1 = 3;
 p2 = 4;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;

ROCKEY4 SMART User’s Guide v1.0

120

 }
 printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);
 printf("\n");

 */
 p1 = 17;
 strcpy((char*)buffer, cmd2);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic 3\n");

 lp1 = 17;
 lp2 = 0;
 p1 = 1;
 p2 = 2;
 p3 = 3;
 p4 = 4;
 retcode = Rockey(RY_CALCULATE3, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");

 printf("\n");
 printf("Result = 1+2+3+4+1+2+3+4=0x14\n");
 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("\n");

 }
}

ROCKEY4 SMART Hardware Algorithms

121

7.3.2 Integrated Algorithm Application Examples

1）Example 1

Example – Step 27: First, obtain the hardware ID of the dongle by finding the dongle; obtain the

hardware ID again using the function of Algorithm 1; if the two hardware IDs are not equal, the

program is illegal.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD findlp1,truelp1;

 DWORD lp1, lp2;
 BYTE buffer[1024];

 int i, j;

 char cmd[] = "A=E|E,B=F|F,C=G|G,D=H|H";

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;

 }
 printf("Find Rock: %08X\n", lp1);
 findlp1=lp1;

ROCKEY4 SMART User’s Guide v1.0

122

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i++;

 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 /*
 p1 = 7;
 p2 = 0x2121;
 p3 = 0;

 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;

ROCKEY4 SMART Hardware Algorithms

123

 }
 printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);
 p1 = 0;
 strcpy((char*)buffer, cmd);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic 1\n");
 */

 lp1 = 0;
 lp2 = 7;
 p1 = 1;
 p2 = 2;
 p3 = 3;
 p4 = 4;
 retcode = Rockey(RY_CALCULATE1, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");
 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

 printf("\n");

 printf("Moudle 7 : %x\n", p3);
 truelp1=MAKELONG(p2,p1);

 printf("truelp1 : %x\n",truelp1);
 if (findlp1==truelp1)

 printf("Hello FeiTian!\n");
 else
 break;

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

ROCKEY4 SMART User’s Guide v1.0

124

 return;
 }

 printf("\n");

 }

}

2）Example 2

Example – Step 28: Obtain the return code of a particular seed using the function of Algorithm

2, and compare it with the return code obtained through the same seed when the program runs for the

first time; if they do not match, the program is illegal.

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];

 WORD rc[4];

 int i, j;

 char cmd1[] = "A=E|E,B=F|F,C=G|G,D=H|H";

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

ROCKEY4 SMART Hardware Algorithms

125

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);

 if (retcode)

 {

 ShowERR(retcode);
 return;
 }

 i++;

 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");
 for (j=0;j<i;j++)
 {

ROCKEY4 SMART User’s Guide v1.0

126

 lp2 = 0x12345678;
 retcode = Rockey(RY_SEED, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);

 rc[0] = p1;
 rc[1] = p2;
 rc[2] = p3;
 rc[3] = p4;

 // :

 p1 = 0;
 strcpy((char*)buffer, cmd1);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

 return;
 }
 printf("Write Arithmetic 2\n");

 lp1 = 0;
 lp2 = 0x12345678;
 p1 = 1;
 p2 = 2;
 p3 = 3;
 p4 = 4;
 retcode = Rockey(RY_CALCULATE2, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");

 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

ROCKEY4 SMART Hardware Algorithms

127

 printf("\n");
 if(rc[0]==p1 && rc[1]==p2 && rc[2]==p3 && rc[3]==p4)

 printf("Hello FeiTian!\n");
 else
 break;

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("\n");

 }
}

3） Example 3

Example – Step 29: You can get the values stored in the 16 modules using the function

of Algorithm 3. Remember that the modules may not be read, even with the advanced

passwords. You may write some important data to the modules or perform some other

operations.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;

 DWORD lp1, lp2;

ROCKEY4 SMART User’s Guide v1.0

128

 BYTE buffer[1024];

 int i, j;

 char cmd2[] = "A=E|E,B=F|F,C=G|G,D=H|H";

 p1 = 0xc44c;
 p2 = 0xc8f8;
 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {

ROCKEY4 SMART Hardware Algorithms

129

 ShowERR(retcode);
 return;
 }

 i++;

 printf("Find Rock: %08X\n", lp1);
 }
 printf("\n");

 for (j=0;j<i;j++)
 {
 /*
 p1 = 0;
 p2 = 1;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);

 if (retcode)
 {
 ShowERR(retcode);
 return;

 }
 printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

 p1 = 1;
 p2 = 2;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);

 p1 = 2;
 p2 = 3;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)

ROCKEY4 SMART User’s Guide v1.0

130

 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

 p1 = 3;
 p2 = 4;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);
 // :
 */

 p1 = 0;
 strcpy((char*)buffer, cmd2);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic 3\n");

 lp1 = 0;
 lp2 = 0;
 p1 = 0;
 p2 = 0;
 p3 = 0;
 p4 = 0;
 retcode = Rockey(RY_CALCULATE3, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

ROCKEY4 SMART Hardware Algorithms

131

 printf("Calculate Input: p1=0, p2=0, p3=0, p4=0\n");

 printf("\n");
 printf("Moudle 0: %x\n",p1);
 printf("Moudle 1: %x\n",p2);
 printf("Moudle 2: %x\n",p3);
 printf("Moudle 3: %x\n",p4);

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }

 printf("\n");

 }
}

4）Example 4
Example – Step 30: You can use all of the 3 algorithms in a program. In the program below, 4

algorithm segments are written to the dongle, and the 3 algorithms are all used.
#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include “Ry4S.h”

void ShowERR(WORD retcode)
{
 if (retcode == 0) return;
 printf("Error Code: %d\n", retcode);
}

void main()
{
 WORD handle[16], p1, p2, p3, p4, retcode;
 DWORD lp1, lp2;
 BYTE buffer[1024];

ROCKEY4 SMART User’s Guide v1.0

132

 int i, j;
 int t1,t2,t3;

 char cmd[] = "H=H^H, A=A*23, F=B*17, A=A+F, A=A+G, A=A<C, A=A^D, B=B^B,
C=C^C, D=D^D";
 char cmd1[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";
 char cmd2[] = "A=A+B, A=A+C, A=A+D, A=A+E, A=A+F, A=A+G, A=A+H";
 char cmd3[] = "H=H^H,A=A|A, B=B|B, C=C|C,D=A+B,D=D+C";

 p1 = 0xc44c;
 p2 = 0xc8f8;

 p3 = 0x0799;
 p4 = 0xc43b;

 retcode = Rockey(RY_FIND, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Find Rock: %08X\n", lp1);

 retcode = Rockey(RY_OPEN, &handle[0], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 i = 1;
 while (retcode == 0)
 {
 retcode = Rockey(RY_FIND_NEXT, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode == ERR_NOMORE) break;
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 retcode = Rockey(RY_OPEN, &handle[i], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)

ROCKEY4 SMART Hardware Algorithms

133

 {
 ShowERR(retcode);
 return;
 }

 i++;

 printf("Find Rock: %08X\n", lp1);

}

 printf("\n");

 for (j=0;j<i;j++)
 {
 p1 = 7;
 p2 = 0x2121;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 7: Pass = %04X Decrease no allow\n", p2);
 printf("\n");

 lp2 = 0x12345678;
 retcode = Rockey(RY_SEED, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Seed: %04X %04X %04X %04X\n", p1, p2, p3, p4);
 printf("\n");

 p1 = 0;
 p2 = 1;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {

ROCKEY4 SMART User’s Guide v1.0

134

 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 0: Pass = %04X Decrease no allow\n", p2);

 p1 = 1;
 p2 = 2;

 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 1: Pass = %04X Decrease no allow\n", p2);

 p1 = 2;
 p2 = 3;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 2: Pass = %04X Decrease no allow\n", p2);

 p1 = 3;
 p2 = 4;
 p3 = 0;
 retcode = Rockey(RY_SET_MODULE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Set Moudle 3: Pass = %04X Decrease no allow\n", p2);
 printf("\n");

 p1 = 0;
 strcpy((char*)buffer, cmd);

ROCKEY4 SMART Hardware Algorithms

135

 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {

 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic 1\n");

 lp1 = 0;
 lp2 = 7;
 p1 = 5;
 p2 = 3;
 p3 = 1;
 p4 = 0xffff;
 retcode = Rockey(RY_CALCULATE1, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Calculate Input: p1=5, p2=3, p3=1, p4=0xffff\n");

 printf("Result = ((5*23 + 3*17 + 0x2121) < 1) ^ 0xffff = 0xBC71\n");
 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);
 t1=p1;

 p1 = 10;
 strcpy((char*)buffer, cmd1);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic 2\n");

 lp1 = 10;
 lp2 = 0x12345678;
 p1 = 1;

ROCKEY4 SMART User’s Guide v1.0

136

 p2 = 2;

 p3 = 3;
 p4 = 4;
 retcode = Rockey(RY_CALCULATE2, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");

 printf("Result =d03a + 94d6 + 96a9 + 7f54 + 1 + 2 + 3 + 4=0x7b17\n");
 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);
 t2=p1;

 p1 = 17;
 strcpy((char*)buffer, cmd2);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic 3\n");

 lp1 = 17;
 lp2 = 0;
 p1 = 1;
 p2 = 2;
 p3 = 3;
 p4 = 4;
 retcode = Rockey(RY_CALCULATE3, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Calculate Input: p1=1, p2=2, p3=3, p4=4\n");
 printf("Result = 1+2+3+4+1+2+3+4=0x14\n");
 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

ROCKEY4 SMART Hardware Algorithms

137

 t3=p1;

 printf("\n");
 p1 = 24;
 strcpy((char*)buffer, cmd3);
 retcode = Rockey(RY_WRITE_ARITHMETIC, &handle[j], &lp1, &lp2, &p1, &p2, &p3,
&p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }
 printf("Write Arithmetic \n");

 lp1 = 24;
 lp2 = 7;
 p1 = t1;
 p2 = t2;
 p3 = t3;
 p4 = 0;
 retcode = Rockey(RY_CALCULATE1, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4,
buffer);
 if (retcode)
 {
 ShowERR(retcode);
 return;
 }

 printf("Calculate Output: p1=%x, p2=%x, p3=%x, p4=%x\n", p1, p2, p3, p4);

 retcode = Rockey(RY_CLOSE, &handle[j], &lp1, &lp2, &p1, &p2, &p3, &p4, buffer);
 if (retcode)
 {
 ShowERR(retcode);

 return;
 }
 printf("\n");

 }

}

7.3.3 Advanced Algorithm Application Examples
Example – Step 31: The key calculations in the source code are completely performed by the

ROCKEY4 SMART User’s Guide v1.0

138

dongle. The following example illustrates this by 3 stages: Firstly, the source code before encryption

is shown; secondly, the dongle is initialized; at last, it is the program used by the end users after

encryption.

Source program:
#include "stdafx.h"
#include "DrawCircle.h"

#include "DrawCircleDoc.h"
#include "DrawCircleView.h"
#include "DrawParamDlg.h"
#include "DrawMethodDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

void CDrawCircleView::DrawCircleMidPoint(CDC *pDC, int iCenterX, int iCenterY, int r)
{
 int x=0;
 int y=r;
 int p=1-r;

 TRACE("Origin\n");

 CirclePlotPoints(pDC,iCenterX,iCenterY,x,y);

 m_lpCircleBuf[0].x = x;
 m_lpCircleBuf[0].y = y;
 m_nPointCount=1;

 while(x<y)
 {
 x++;
 if(p<0)
 {
 p+=2*x+1;
 }
 else

 {
 y--;
 p+=2*(x-y)+1;
 }

ROCKEY4 SMART Hardware Algorithms

139

 TRACE("%d,(%d,%d);",p,x,y);
 CirclePlotPoints(pDC,iCenterX,iCenterY,x,y);

 m_lpCircleBuf[m_nPointCount].x = x;
 m_lpCircleBuf[m_nPointCount].y = y;
 m_nPointCount++;
 }
 TRACE("\n");

}

 Initialize the dongle:
#include "stdafx.h"
#include <windows.h>
#include "..\inc\Ry4S.h"

void ReportErr(WORD wCode)
{
 printf("ERROR:%d\n",wCode);
}

int main(int argc, char* argv[])
{
 WORD p1=0xc44c,p2=0xc8f8,p3=0x0799,p4=0xc43b;
 DWORD lp1,lp2;
 WORD handle[16];
 BYTE buffer[1024];
 BYTE cmdstr[] = "B=B|B,B=B+1,B=B*2,B=B+1,A=A+B,C=C-1,C=C*2,B=A-C";
 WORD retcode;

 retcode = Rockey(RY_FIND,&handle[0],&lp1,&lp2,&p1,&p2,&p3,&p4,buffer);
 if(retcode)
 {
 ReportErr(retcode);
 return 0;
 }

 printf("Find successfully\n");

 retcode = Rockey(RY_OPEN,&handle[0],&lp1,&lp2,&p1,&p2,&p3,&p4,buffer);
 if(retcode)
 {
 ReportErr(retcode);
 return 0;
 }

ROCKEY4 SMART User’s Guide v1.0

140

 printf("Open successfully\n");

 p1 = 10;
 retcode =
Rockey(RY_WRITE_ARITHMETIC,&handle[0],&lp1,&lp2,&p1,&p2,&p3,&p4,cmdstr);
 if(retcode)
 {
 ReportErr(retcode);
 return 0;
 }
 printf("Write arithmetirc successfully\n");

 retcode = Rockey(RY_CLOSE,&handle[0],&lp1,&lp2,&p1,&p2,&p3,&p4,buffer);

 return 0;
}

End user program:
#include "stdafx.h"
#include "DrawCircle.h"

#include "DrawCircleDoc.h"
#include "DrawCircleView.h"
#include "DrawParamDlg.h"
#include "DrawMethodDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

WORD p1=0xc44c,p2=0xc8f8,p3=0x0799,p4=0xc43b;
DWORD lp1,lp2;
WORD handle[16];
BYTE buffer[1024];

void CDrawCircleView::DrawCircleMidPoint_Rockey(CDC *pDC, int iCenterX, int iCenterY, int r)
{
 int x=0;
 int y=r;
 int p=1-r;
 int seed=0;

 short p1,p2,p3,p4;

ROCKEY4 SMART Hardware Algorithms

141

 CirclePlotPoints(pDC,iCenterX,iCenterY,x,y);

 TRACE("Hardware\n");
 m_lpCircleBuf[0].x = x;
 m_lpCircleBuf[0].y = y;
 m_nPointCount=1;

 while(x<y)
 {
 p1 = p;
 p2 = x;
 p3 = y;
 p4 = seed;

 if(!RunRockey((WORD&)p1,(WORD&)p2,(WORD&)p3,(WORD&)p4))
 {
 // AfxMessageBox("Runtime error");
 break;
 }

 if(p<0)
 {
 p = p1;
 }
 else
 {
 p = p2;
 y--;

 }
 x++;
 TRACE("%d,(%d,%d);",p,x,y);
 CirclePlotPoints(pDC,iCenterX,iCenterY,x,y);

 m_lpCircleBuf[m_nPointCount].x = x;
 m_lpCircleBuf[m_nPointCount].y = y;
 m_nPointCount++;
 }
 TRACE("\n");
}

BOOL CDrawCircleView::RunRockey(WORD &A, WORD &B, WORD &C, WORD &D)
{
 WORD retcode;

 lp1 = 10;
 retcode = Rockey(RY_CALCULATE1,&handle[0],&lp1,&lp2,&A,&B,&C,&D,buffer);

ROCKEY4 SMART User’s Guide v1.0

142

 if(retcode)
 return FALSE;
 else
 return TRUE;

}

7.4 Considerations

The algorithm area in the ROCKEY4 SMART has 128 words. That is to say, the

ROCKEY4 SMART dongle supports as many as 128 instructions or 128 algorithms,

because every instruction takes one word. Developers do not need to consider the starting

and ending flags of an algorithm, because they are handled by the dongle. In practice, this

means that if you write a 2-instruction algorithm to the dongle, and then a 3-instruction

algorithm, the two algorithms will not be recognized as a single 5-instruction algorithm. If

the starting point used in calculations is incorrect, the result will be unpredictable.

7.5 Application Tips of Encryption Solution

1. Use as more as possible encryption calls to the ROCKEY4 SMART API - In the

program need to be encrypted, insert multiple calls to the ROCKEY4 SMART API

from within your application to increase the cracker’s work strength, and the complex

multiple calls to the API can increase the cracking difficulties. The more calling to

APIs and verifying the return codes, the more difficulties to crack these codes. Of

course, these calling should reside in as many different places as possible in your

program, which needs to be encrypted.

2. Dynamically use the seed code functions as far as possible - In the program need to

be encrypted, dynamically call the seed code functions in the dongle, can make the

information to be verified or the information exchanged with the dongle every time

inconsistent with each other. This is even more difficult to the crackers. For example,

ROCKEY4 SMART Hardware Algorithms

143

the developers can randomly obtain some data of the system as the seed code, like

system date, etc.

3. Avoid using the duplicate encryption methods in your application as far as

possible - If you repeatedly use the same protection method in your application, it will

be easier for the cracker to find the rule and crack your application. In other words, if

a developer uses different encryption methods in one program, every time the cracker

will spend more energy to trace the program, and constantly face new cracking tasks.

If the developer uses some dynamic encryption methods, the cracking will be even

more difficult.

4. Encrypt some character string and data – Encrypt some character strings and data

in the program need to be encrypted, to let the decryption rely on the existence of the

ROCKEY4 SMART dongle. If these character strings and data cannot be properly

decrypted, program failure or illegality will be caused. (Please refer to the example in

Step 18 for specific applications)

5. Use API encryption and Envelope encryption together – The best protection will

be achieved by using a complex and dynamic implementation of the ROCKEY4

SMART API, and then protecting the new executable files with the envelope.

In summary, the encryption strength largely depends on the practical environment of

how the encryption methods are used. It is recommended that the encryption developers

using the dongle flexibly apply our encryption tools according to their practical

environment.

ROCKEY4 SMART User’s Guide v1.0

144

Chapter 8 FAQs

This chapter covers some frequently asked questions and some solutions when using the

ROCKEY4 SMART dongles.

8.1 Common Ways of Dealing with Problems
■ Test the dongle with Ry4S_Editor.exe under directory TOOLS

■ Use the latest version of SDK (Download from our website)

■ Please refer to our website at http://www.ftsafe.com, we will update this website frequently.

■ Use a replacement computer to test if the problem still exists.

■ Check if the computer has been infected with viruses, which may prevent the program from

running normally.

8.2 FAQs

1. What is the evaluation kit?

Answer: The evaluation kit includes a dongle provided to developers for evaluation purpose. It also

includes a product package, a manual, and a CD etc. The dongle is the same as the formal version,

except that its passwords are public and unified.

2. Is the password mechanism of the ROCKEY4 SMART dongle secure?

Answer: It is very secure. The users can use our tool to generate 4 passwords in two levels, each has a

length of 16 bits. The first level is the basic passwords, which are used to perform basic operations on

the dongle. The second level is the advanced passwords, which are specially used by the developers

for controlling writing to the dongle and defining encryption algorithms. The advanced passwords

must not appear in the software delivered to end users, so that they cannot be obtained even by tracing.

Moreover, if the advanced passwords are incorrect and the operation of writing to the high address

http://www.ftsafe.com/

FAQs

145

area of the user memory is attempted for 4 times in succession, the dongle will be locked for 2

seconds. During the locking period, no operation will be accepted. This measure prevents hackers

from using a program for password attempts.

3. What is the dongle with the same passwords?

Answer: After a batch of dongles is delivered to the developers, the users may modify the passwords

of the dongles to be identical, using our password initialization tool. After the encryption task is done,

the developers produce their own software in a large amount by compressing it into CDs. Then the

developers sell the encrypted software out together with the dongles, eliminating the needs to

recompile every set of software one by one.

4. Is it true that a data sharer can share a dongle?

Answer: The sharer can be prevented by using our methods. Actually, it is very simple. You can

design your program to generate a random number and write it to a fixed address on the dongle when

the program starts, and verify the content at that address with the random number during the runtime.

If during this time the program is also running on another computer, a different random number must

have been written to the fixed address.

5. Will the performance of the software be compacted significantly if I write a complex

algorithm to the ROCKEY4 SMART dongle?

Answer: No. During the testing, we got that the running time difference between the simplest

algorithm and the most complex algorithm is merely tens of milliseconds. The difference will not be

perceived at all if the algorithm is not called frequently.

6. Why is my USB dongle recognized as an unknown device?

Answer: This problem occurs rarely. Interference may exist in your environment or your dongle is not

in good connection with your computer. Please remove and attach your dongle again.

7. My computer is equipped with a USB port and installed Windows 98. Why can’t I see the

USB device in Device Manager?

Answer: Maybe the USB support option is disabled in BIOS settings.

8. How can I update the software of the dongle?

Answer: If you are our evaluation user, you will receive updates from us regularly. Otherwise, go to

ROCKEY4 SMART User’s Guide v1.0

146

http://www.ftsafe.com to download the latest version of developer’s kit.

9. Why did I fail to call RY_ADJUST_TIMER?

Answer: A time parameter of SYSTEMTIME type is required to call this function. There is a time

stamp in the dongle. If the parameter is earlier (or less) than the time stamp, modification is not

possible. A failure will be returned in this case. If the value of the parameter is later (or greater) than

the time stamp, the value of the parameter will be assigned to the time stamp, and calling to the

function will succeed. This function is often used to check if the computer time has been changed.

147

Appendix A Directory Structure Of CD

On the ROCKEY4 SMART CD, you can find a complete ROCKEY4 SMART developer’s kit, which

is briefly introduced here in the following table.
Directory Description

API Static libraries, dynamic libraries, COM components, OCX
controls required for development

Docs Documentation that describes the calling interface of the
dongle functions and the usage of tools

Driver For Win98 HID driver for Windows 98

Include Header files required for development

Management License manager software, production tool software

Samples Examples of various programming languages

Support Jet driver with an Access database for Windows 98

Tools
Some software tools, including the Editor, the flash
encryption tool, the envelope encryption tool and the .Net
program encryption tool

	Chapter 1 Introduction
	1.1 About ROCKEY4 SMART
	1.2 Software Protection Principles
	1.3 ROCKEY4 SMART Advantages
	1.4 Choosing an Appropriate Encryption Solution
	Chapter 2 Hardware Features
	2.1 Internal Structure
	2.2 Hardware Interface
	2.3 Considerations

	Chapter 3 Development Kit
	3.1 Contents of the CD
	3.1.1 Tools
	3.1.2 Development Interfaces

	3.2 Installing Development Kit
	3.3 Uninstalling Development Kit
	3.4 Driver Installation under Windows 98 SE

	 Chapter 4 Basic Concepts
	4.1 Passwords
	4.2 Hardware ID
	4.3 User Memory Area
	4.4 Module Characters
	4.5 Module Property Characters
	4.6 Algorithm Area
	4.7 User ID
	4.8 Random Number
	4.9 Seed Code and Return Codes
	4.10 Timer and Counter
	4.11 Dongle Configuration Update

	Chapter 5 Dongle Editor
	5.1 Introduction
	5.2 Description of Operations
	5.2.1 Entering Passwords
	5.2.2 Editting
	5.2.3 Testing
	5.2.4 Timing and Number of Uses
	5.2.5 Self-testing

	5.3 Save your Work

	Chapter 6 Calling API Functions
	6.1 Function Prototype and Definition
	6.2 ROCKEY4 SMART API Services
	6.3 Error Codes
	6.4 Basic Application Examples
	6.4.1 Unencrypted Program – Step 0
	6.4.2 Finding Dongle – Step 1
	6.4.3 Opening Dongle – Step 2
	6.4.4 User Memory – Step 3/Step 4
	6.4.5 Generating a True Random Number with Dongle– Step 5
	6.4.6 Seed Code – Step 6/Step 7
	6.4.7 User ID – Step 8/Step 9
	6.4.8 Setting Module Characters – Step 10/Step 11/Step 12
	6.4.9 Dongle Cascading – Step 13

	6.5 Advanced Application Examples
	6.5.1 User Memory Area Applications
	6.5.2 Seed Applications
	6.5.3 User ID Applications
	6.5.4 Module Applications
	6.5.5 Dongles with Same UID for Different Software Products

	 Chapter 7 ROCKEY4 SMART Hardware Algorithms
	7.1 Introduction to Self-defined Algorithms
	7.1.1 Instruction Format
	7.1.2 Internal Algorithms & Application Interface
	7.1.3 Difference Between Three Algorithms
	7.1.4 API Interfaces of User Program

	7.2 Writing Self-defined Algorithms
	7.2.1 Writing Algorithm
	7.2.2 Instruction Conventions

	7.3 Examples of Use of User-defined Algorithms
	7.3.1 Basic Appliation Examples
	1）Algorithm 1
	2）Algorithm 2
	3）Algorithm 3

	7.3.2 Integrated Algorithm Application Examples
	1）Example 1
	2）Example 2
	3） Example 3
	4）Example 4

	7.3.3 Advanced Algorithm Application Examples

	7.4 Considerations
	7.5 Application Tips of Encryption Solution

	Chapter 8 FAQs
	8.1 Common Ways of Dealing with Problems
	8.2 FAQs

	Appendix A Directory Structure Of CD

